
PSEUDO-CODE
Komate AMPHAWAN



PRELIMINARY

• Pseudocode is an informal tool that you can use to 
plan out your algorithms.

• As you begin to write more complex code, it can be 
hard to keep an entire program in your head before 
coding it.

• Think of pseudocode as a step-by-step verbal 
outline of your code that you can later transcribe 
into a programming language. 



PRELIMINARY

• It is a combination of human language and 
programming language: it mimics the syntax of 
actual computer code, but it is more concerned 
with readability than with technical specificity.



KNOW WHAT PSEUDOCODE 
IS.



• Pseudocode is a step-by-step verbal outline of your 
code that you can gradually transcribe into 
programming language.

• Many programmers use it to plan out the function of 
an algorithm before setting themselves to the more 
technical task of coding.

• Pseudocode serves as an informal guide, a tool for 
thinking through program problems, and a 
communication device that can help you explain 
your ideas to other people.



UNDERSTAND WHY 
PSEUDOCODE IS USEFUL.



• Pseudocode is used to show how a computing 
algorithm should and could work.

• Coders often use pseudocode as an intermediate 
step in programming, in between the initial planning 
stage and the stage of writing actual, executable 
code.

• Good pseudocode can become comments in the 
final program, guiding the programmer in the future 
when debugging the code, or revising it in the 
future.



• Pseudocode can also be useful for:
• Describing how an algorithm should work. Pseudocode 

can illustrate where a particular construct, mechanism, or 
technique could or must appear in a program. Senior 
programmers often use the pseudocode to quickly 
explain the steps their junior programmers need to follow 
in order to accomplish a required task.

• Explaining a computing process to less technical people. 
Computers need a very strict input syntax to run a 
program, but humans (especially non-programmers) may 
find it easier to understand a more fluid, subjective 
language that clearly states the purpose of each line of 
code.



• Designing code in a collaborative development group. 
High-level software architects will often include 
pseudocode into their designs to help solve a complex 
problem they see their programmers running into. If you 
are developing a program along with other coders, you 
may find that pseudocode helps make your intentions 
clear.



REMEMBER THAT 
PSEUDOCODE IS SUBJECTIVE 
AND NONSTANDARD.



• There is no set syntax that you absolutely must use for 
pseudocode, but it is common professional courtesy 
to use standard pseudocode structures that other 
programmers can easily understand.

• If you are coding a project by yourself, then the 
most important thing is that the pseudocode helps 
you structure your thoughts and enact your plan.



• If you are working with others on a project—whether 
they are your peers, junior programmers, or non-
technical collaborators—it is important to use at 
least some standard structures so that everyone else 
can easily understand your intent.
• If you are enrolled in a programming course at a 

university, a coding camp, or a company, you will likely 
be tested against a taught pseudocode "standard". This 
standard often varies between institutions and teachers.



• Clarity is a primary goal of pseudocode, and it may help 
if you work within accepted programming conventions. 
As you develop your pseudocode into actual code, you 
will need to transcribe it into a programming language –
so it can help to structure your outline with this in mind.



UNDERSTAND ALGORITHMS.



• An algorithm is a procedure for solving a problem in 
terms of the actions that a program will take and the 
order in which it will take those actions.

• An algorithm is merely the sequence of steps taken 
to solve a problem.



• The steps are normally "sequence," "selection, " 
"iteration," and a case-type statement.
• In C, "sequence statements" are imperatives.

• The "selection" is the "if then else" statement.

• The iteration is satisfied by a number of statements, such 
as the "while," " do," and the "for."

• The case-type statement is satisfied by the "switch" 
statement.



REMEMBER THE THREE BASIC 
CONSTRUCTS THAT 
CONTROL ALGORITHM 
FLOW.



• If you can implement a "sequence" function, a 
"while" (looping) function, and an "if-then-else" 
(selection) function, then you have the basic tools 
that you need to write a "proper" algorithm.
• SEQUENCE is a linear progression where one task is 

performed sequentially after another. For example:
• READ height of rectangle

• READ width of rectangle

• COMPUTE area as height times width



• WHILE is a loop (repetition) with a simple conditional test 
at its beginning. The beginning and ending of the loop 
are indicated by two keywords WHILE and ENDWHILE. The 
loop is entered only if the condition is true. For example:
• WHILE Population < Limit

• Compute Population as Population + Births - Deaths

• ENDWHILE



• IF-THEN-ELSE is a decision (selection) in which a choice is 
made between two alternative courses of action. A 
binary choice is indicated by these four keywords: IF, 
THEN, ELSE, and ENDIF. For example:
• IF HoursWorked > NormalMaximum THEN

• Display overtime message

• ELSE
• Display regular time message

• ENDIF



REFERENCES

• http://www.wikihow.com/Write-Pseudocode



EXAMPLE







Q & A


