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■■ Basic probability theoryBasic probability theory
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■■ Bias of the Bayesian methodBias of the Bayesian method
■■ Certainty factors theory and evidentialCertainty factors theory and evidential

reasoningreasoning
■■ SummarySummary
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Introduction, or what is uncertainty?Introduction, or what is uncertainty?
■■ Information can be incomplete, inconsistent,Information can be incomplete, inconsistent,

uncertain, or all three.  In other words, informationuncertain, or all three.  In other words, information
is often unsuitable for solving a problem.is often unsuitable for solving a problem.

■■ UncertaintyUncertainty is defined as the lack of the exact is defined as the lack of the exact
knowledge that would enable us to reach a perfectlyknowledge that would enable us to reach a perfectly
reliable conclusion. Classical logic permits onlyreliable conclusion. Classical logic permits only
exact reasoning.  It assumes that perfect knowledgeexact reasoning.  It assumes that perfect knowledge
always exists and the always exists and the law of the excluded middlelaw of the excluded middle
can always be applied:can always be applied:

IFIF                 A A is trueis true    IF   IF             A A is falseis false
THEN THEN AA is not false is not false    THEN    THEN AA is not true is not true
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■■ Weak implicationsWeak implications.. Domain experts and Domain experts and
knowledge engineers have the painful task ofknowledge engineers have the painful task of
establishing concrete correlations between IFestablishing concrete correlations between IF
(condition) and THEN (action) parts of the rules.(condition) and THEN (action) parts of the rules.
Therefore, expert systems need to have the abilityTherefore, expert systems need to have the ability
to handle vague associations, for example byto handle vague associations, for example by
accepting the degree of correlations as numericalaccepting the degree of correlations as numerical
certainty factors.certainty factors.

Sources of uncertain knowledgeSources of uncertain knowledge
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■■ Imprecise languageImprecise language.. Our natural language is Our natural language is
ambiguous and imprecise.  We describe facts withambiguous and imprecise.  We describe facts with
such terms as such terms as oftenoften and  and sometimessometimes, , frequentlyfrequently and and
hardly everhardly ever.  As a result, it can be difficult to.  As a result, it can be difficult to
express knowledge in the precise IF-THEN form ofexpress knowledge in the precise IF-THEN form of
production rules.  However, if the meaning of theproduction rules.  However, if the meaning of the
facts is quantified, it can be used in expert systems.facts is quantified, it can be used in expert systems.
In 1944, Ray Simpson asked 355 high school andIn 1944, Ray Simpson asked 355 high school and
college students to place 20 terms like college students to place 20 terms like oftenoften on a on a
scale between 1 and 100.  In 1968, Milton Hakelscale between 1 and 100.  In 1968, Milton Hakel
repeated this experiment.repeated this experiment.
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Quantification of ambiguous and impreciseQuantification of ambiguous and imprecise
terms on a time-frequency scaleterms on a time-frequency scale

Term
Always
Very often
Usually
Often
Generally
Frequently
Rather often
About as often as not
Now and then
Sometimes
Occasionally
Once in a while
Not often
Usually not
Seldom
Hardly ever
Very seldom
Rarely
Almost never
Never

Mean value
99
88
85
78
78
73
65
50
20
20
20
15
13
10
10

7
6
5
3
0

Term
Always
Very often
Usually
Often

Generally
Frequently
Rather often

About as often as not
Now and then
Sometimes
Occasionally
Once in a while
Not often
Usually not
Seldom
Hardly ever
Very seldom
Rarely
Almost never
Never

Mean value
100

87
79
74
74
72
72
50
34
29
28
22
16
16

9
8
7
5
2
0

Milton Hakel (1968)Ray Simpson (1944)
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■■ Unknown dataUnknown data.. When the data is incomplete or When the data is incomplete or
missing, the only solution is to accept the valuemissing, the only solution is to accept the value
“unknown” and proceed to an approximate“unknown” and proceed to an approximate
reasoning with this value.reasoning with this value.

■■ Combining the views of different expertsCombining the views of different experts.. Large Large
expert systems usually combine the knowledge andexpert systems usually combine the knowledge and
expertise of a number of experts. Unfortunately,expertise of a number of experts. Unfortunately,
experts often have contradictory opinions andexperts often have contradictory opinions and
produce conflicting rules.  To resolve the conflict,produce conflicting rules.  To resolve the conflict,
the knowledge engineer has to attach a weight tothe knowledge engineer has to attach a weight to
each expert and then calculate the compositeeach expert and then calculate the composite
conclusion. But no systematic method exists toconclusion. But no systematic method exists to
obtain these weights.obtain these weights.
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Basic probability theoryBasic probability theory

■■ The concept of probability has a long history thatThe concept of probability has a long history that
goes back thousands of years when words likegoes back thousands of years when words like
“probably”, “likely”, “maybe”, “perhaps” and“probably”, “likely”, “maybe”, “perhaps” and
“possibly” were introduced into spoken languages.“possibly” were introduced into spoken languages.
However, the mathematical theory of probabilityHowever, the mathematical theory of probability
was formulated only in the 17th century.was formulated only in the 17th century.

■■ The The probabilityprobability of an event is the proportion of of an event is the proportion of
cases in which the event occurs.  Probability cancases in which the event occurs.  Probability can
also be defined as a also be defined as a scientific measure of chancescientific measure of chance..
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■■ Probability can be expressed mathematically as aProbability can be expressed mathematically as a
numerical index with a range between zero (annumerical index with a range between zero (an
absolute impossibility) to unity (an absoluteabsolute impossibility) to unity (an absolute
certainty).certainty).

■■ Most events have a probability index strictlyMost events have a probability index strictly
between 0 and 1, which means that each event hasbetween 0 and 1, which means that each event has
at leastat least two possible outcomes: favourable outcome two possible outcomes: favourable outcome
or success, and unfavourable outcome or failure.or success, and unfavourable outcome or failure.

( )
outcomes possible of number the

 successesof number thesuccessP =

( )
outcomes possible of number the

failures of number thefailureP =
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■■ If If ss is the number of times success can occur, and  is the number of times success can occur, and ff
is the number of times failure can occur, thenis the number of times failure can occur, then

( )
fs

spsuccessP
+

==

( )
fs

fqfailureP
+

==

and                          and                          p + q = 1

■■ If we throw a coin, the probability of getting a headIf we throw a coin, the probability of getting a head
will be equal to the probability of getting a tail.  In awill be equal to the probability of getting a tail.  In a
single throw, single throw, ss =  = ff = 1, and therefore the probability = 1, and therefore the probability
of getting a head (or a tail) is 0.5.of getting a head (or a tail) is 0.5.
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■■ Let Let AA be an event in the world and  be an event in the world and BB be another event. be another event.
Suppose that events Suppose that events AA and  and BB are not mutually are not mutually
exclusive, but occur conditionally on the occurrence ofexclusive, but occur conditionally on the occurrence of
the other.  The probability that event the other.  The probability that event AA will occur if will occur if
event event BB occurs is called the  occurs is called the conditional probabilityconditional probability..
Conditional probability is denoted mathematically asConditional probability is denoted mathematically as
pp((AA||BB)) in which the vertical bar represents  in which the vertical bar represents GIVENGIVEN and and
the complete probability expression is interpreted asthe complete probability expression is interpreted as
“Conditional probability of event A occurring given“Conditional probability of event A occurring given
that event B has occurred”that event B has occurred”..

Conditional probabilityConditional probability

( )
occur can B times of number the

occur can B and A times of number theBAp =
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■■ The number of times The number of times AA and  and BB can occur, or the can occur, or the
probability that both probability that both AA and  and BB will occur, is called will occur, is called
the the joint probabilityjoint probability of  of AA and  and BB.  It is represented.  It is represented
mathematically as mathematically as pp((AA∩∩BB)).  The number of ways .  The number of ways BB
can occur is the probability of can occur is the probability of BB, , pp((BB), and thus), and thus

( ) ( )
( )Bp

BApBAp ∩=

■■ Similarly, the conditional probability of event Similarly, the conditional probability of event BB
occurring given that event occurring given that event AA has occurred equals has occurred equals

( ) ( )
( )Bp

BApBAp ∩=
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Hence,Hence,

Substituting the last equationSubstituting the last equation  into the equationinto the equation

( ) ( ) ( )ApABpABp ×=∩

andand ( ) ( ) ( )ApABpBAp ×=∩

( ) ( )
( )Bp

BApBAp ∩=

yields the yields the Bayesian ruleBayesian rule::



   Negnevitsky, Pearson Education, 2002Negnevitsky, Pearson Education, 2002 13

where:
p(A|B) is the conditional probability that event A

occurs given that event B has occurred;
p(B|A) is the conditional probability of event B

occurring given that event A has occurred;
p(A) is the probability of event A occurring;
p(B) is the probability of event B occurring.

Bayesian ruleBayesian rule

( ) ( ) ( )
( )Bp

ApABp
BAp

×
=
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The joint probabilityThe joint probability

( ) ( ) ( )i
n

i
i

n

i
i BpBApBAp ×=∩ ∑∑

== 11

AB 4

B 3

B 1

B 2
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If the occurrence of event If the occurrence of event AA depends on only two depends on only two
mutually exclusive events, mutually exclusive events, BB and NOT  and NOT BB, we obtain:, we obtain:

where where ¬¬   is the logical function NOT.is the logical function NOT.
Similarly,Similarly,

 p(A) = p(A|B) × p(B) + p(A|¬B) × p(¬B)

 p(B) = p(B|A) × p(A) + p(B|¬A) × p(¬A)

Substituting this equation into the Bayesian rule yields:Substituting this equation into the Bayesian rule yields:

( ) ( ) ( )
( ) ( ) ( ) ( )ApABpApABp

ApABp
BAp

¬×¬+×
×

=
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Suppose all rules in the knowledge base areSuppose all rules in the knowledge base are
 represented in the following form: represented in the following form:

IFIF HH is true is true
THENTHEN EE is true {with probability  is true {with probability pp}}

This rule implies that if event This rule implies that if event HH occurs, then the occurs, then the
 probability that event  probability that event EE will occur is  will occur is pp..

In expert systems, In expert systems, HH usually represents a hypothesis usually represents a hypothesis
and and EE denotes evidence to support this hypothesis. denotes evidence to support this hypothesis.

Bayesian reasoningBayesian reasoning
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The Bayesian rule expressed in terms of hypothesesThe Bayesian rule expressed in terms of hypotheses
 and evidence looks like this: and evidence looks like this:

( ) ( ) ( )
( ) ( ) ( ) ( )HpHEpHpHEp

HpHEp
EHp

¬×¬+×
×

=

where:where:
pp((HH) is the prior probability of hypothesis ) is the prior probability of hypothesis HH being true; being true;
pp((EE||HH) is the probability that hypothesis ) is the probability that hypothesis HH being true will being true will

result in evidence result in evidence EE;;
pp((¬¬ HH) is the prior probability of hypothesis ) is the prior probability of hypothesis HH being being

false;false;
pp((EE|¬|¬HH) is the probability of finding evidence ) is the probability of finding evidence EE even even

when hypothesis when hypothesis HH is false. is false.
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■■ In expert systems, the probabilities required to solveIn expert systems, the probabilities required to solve
a problem are provided by experts.  An experta problem are provided by experts.  An expert
determines the determines the prior probabilitiesprior probabilities for possible for possible
hypotheses hypotheses pp((HH) and ) and pp((¬¬ HH), and also the), and also the
conditional probabilitiesconditional probabilities for observing evidence  for observing evidence EE
if hypothesis if hypothesis HH is true,  is true, pp((EE||HH), and if hypothesis ), and if hypothesis HH
is false, is false, pp((EE|¬|¬HH).).

■■ Users provide information about the evidenceUsers provide information about the evidence
observed and the expert system computes observed and the expert system computes pp((HH||EE) for) for
hypothesis hypothesis HH in light of the user-supplied evidence in light of the user-supplied evidence
EE.  Probability .  Probability pp((HH||EE) is called the ) is called the posteriorposterior
probabilityprobability of hypothesis  of hypothesis HH upon observing upon observing
evidence evidence EE..
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■■ We can take into account both multiple hypothesesWe can take into account both multiple hypotheses
HH11, , HH22,..., ,..., HHmm and multiple evidences  and multiple evidences EE11, , EE22,..., ,..., EEnn..
The hypotheses as well as the evidences must beThe hypotheses as well as the evidences must be
mutually exclusive and exhaustive.mutually exclusive and exhaustive.

■■ Single evidence Single evidence EE and multiple hypotheses and multiple hypotheses  follow:follow:

■■ Multiple evidences and multiple hypothesesMultiple evidences and multiple hypotheses  follow:follow:

( ) ( ) ( )

( ) ( )∑
=

×

×
= m

k
kk

ii
i

HpHEp

HpHEp
EHp

1

( ) ( ) ( )

( ) ( )∑
=

×

×
= m

k
kkn

iin
ni

HpHE . . . E Ep

HpHE . . . E Ep
E . . . E EHp

1
21

21
21
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■■ This requires to obtain the conditional probabilitiesThis requires to obtain the conditional probabilities
of all possible combinations of evidences for allof all possible combinations of evidences for all
hypotheses, and thus  places an enormous burdenhypotheses, and thus  places an enormous burden
on the expert.on the expert.

■■ Therefore, in expert systems, conditionalTherefore, in expert systems, conditional
independence among different evidences assumed.independence among different evidences assumed.
Thus, instead of the unworkable Thus, instead of the unworkable equationequation, we, we
attain:attain:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑
=

××××

××××
= m

k
kknkk

iinii
ni

HpHEp . . . HEpHEp

HpHEpHEpHEp
E . . . E EHp

1
21

21
21

 . . . 
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Ranking potentially true hypothesesRanking potentially true hypotheses

Let us consider a simple example.Let us consider a simple example.

Suppose an expert, given three conditionallySuppose an expert, given three conditionally
independent evidences independent evidences EE11, , EE22 and  and EE33, creates three, creates three
mutually exclusive and exhaustive hypotheses mutually exclusive and exhaustive hypotheses HH11, , HH22
and and HH33, and provides prior probabilities for these, and provides prior probabilities for these
hypotheses – hypotheses – pp((HH11), ), pp((HH22) and ) and pp((HH33), respectively.), respectively.
The expert also determines the conditionalThe expert also determines the conditional
probabilities of observing each evidence for allprobabilities of observing each evidence for all
possible hypotheses.possible hypotheses.
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The prior and conditional probabilitiesThe prior and conditional probabilities
H y p o t h e s i s

Probability
  = 1i   = 2i   = 3i
0.40

0.9

0.6

0.3

0.35

0.0

0.7

0.8

0.25

0.7

0.9

0.5

( )iHp

( )iHEp 1

( )iHEp 2

( )iHEp 3

Assume that we first observe evidence Assume that we first observe evidence EE33. The expert. The expert
system computes the posterior probabilities for allsystem computes the posterior probabilities for all
hypotheses ashypotheses as
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Thus,Thus,

( ) ( ) ( )

( ) ( )
3 2, 1,=          ,3

1
3

3
3 i

HpHEp

HpHEp
EHp

k
kk

ii
i

∑
=

×

×
=

( ) 0.34
25.09.0 + 35.07.0 + 0.400.6

0.400.6
31 =

⋅⋅⋅
⋅=EHp

( ) 0.34
25.09.0 + 35.07.0 + 0.400.6

35.07.0
32 =

⋅⋅⋅
⋅=EHp

( ) 0.32
25.09.0 + 35.07.0 + 0.400.6

25.09.0
33 =

⋅⋅⋅
⋅=EHp

After evidence After evidence EE33 is observed, belief in hypothesis  is observed, belief in hypothesis HH22
increases and becomes equal to belief in hypothesisincreases and becomes equal to belief in hypothesis
HH11.  Belief in hypothesis .  Belief in hypothesis HH33 also increases and even also increases and even
nearly reaches beliefs in hypotheses nearly reaches beliefs in hypotheses HH11 and  and HH22..
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Suppose now that we observe evidence Suppose now that we observe evidence EE11.  The.  The
posterior probabilities are calculated asposterior probabilities are calculated as

( ) ( ) ( ) ( )

( ) ( ) ( )
3 2, 1,=          ,3

1
31

31
31 i

HpHEpHEp

HpHEpHEp
EEHp

k
kkk

iii
i

∑
=

××

××
=

Hence,Hence,
( ) 0.19

25.09.00.5 + 35.07.00.8 + 0.400.60.3
0.400.60.3

311 =
⋅⋅⋅⋅⋅⋅

⋅⋅=EEHp

( ) 0.52
25.09.00.5 + 35.07.00.8 + 0.400.60.3

35.07.00.8
312 =

⋅⋅⋅⋅⋅⋅
⋅⋅=EEHp

( ) 0.29
25.09.00.5 + 35.07.00.8 + 0.400.60.3

25.09.00.5
313 =

⋅⋅⋅⋅⋅⋅
⋅⋅=EEHp

Hypothesis Hypothesis HH22 has now become the most likely one. has now become the most likely one.
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After observing evidence After observing evidence EE22, the final posterior, the final posterior
probabilities for all hypotheses are calculated:probabilities for all hypotheses are calculated:

Although the initial ranking was Although the initial ranking was HH11, , HH22 and  and HH33, only, only
hypotheses hypotheses HH11 and  and HH33 remain under consideration remain under consideration
after all evidences (after all evidences (EE11, , EE22 and  and EE33) were observed.) were observed.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
3 2, 1,=          ,3

1
321

321
321 i

HpHEpHEpHEp

HpHEpHEpHEp
EEEHp

k
kkkk

iiii
i

∑
=

×××

×××
=

( ) 0.45
25.09.00.70.5 + 35.07.00.00.8 + 0.400.60.90.3

0.400.60.90.3
3211 =

⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅=EEEHp

( ) 0
25.09.00.70.5 + 35.07.00.00.8 + 0.400.60.90.3

35.07.00.00.8
3212 =

⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅=EEEHp

( ) 0.55
25.09.00.70.5 + 35.07.00.00.8 + 0.400.60.90.3

25.09.00.70.5
3213 =

⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅=EEEHp
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■■ The framework for Bayesian reasoning requiresThe framework for Bayesian reasoning requires
probability values as primary inputs.  Theprobability values as primary inputs.  The
assessment of these values usually involves humanassessment of these values usually involves human
judgement.  However, psychological researchjudgement.  However, psychological research
shows that humans either cannot elicit probabilityshows that humans either cannot elicit probability
values consistent with the Bayesian rules.values consistent with the Bayesian rules.

■■ This suggests that the conditional probabilities mayThis suggests that the conditional probabilities may
be inconsistent with the prior probabilities given bybe inconsistent with the prior probabilities given by
the expert.the expert.

Bias of the Bayesian methodBias of the Bayesian method
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■■ Consider, for example, a car that does not start andConsider, for example, a car that does not start and
makes odd noises when you press the starter.  Themakes odd noises when you press the starter.  The
conditional probability of the starter being faulty ifconditional probability of the starter being faulty if
the car makes odd noises may be expressed as:the car makes odd noises may be expressed as:
IFIF               the symptom is “odd noises”the symptom is “odd noises”
THEN  the starter is bad {with probability 0.7}THEN  the starter is bad {with probability 0.7}

■■ Consider, for example, a car that does not start andConsider, for example, a car that does not start and
makes odd noises when you press the starter.  Themakes odd noises when you press the starter.  The
conditional probability of the starter being faulty ifconditional probability of the starter being faulty if
the car makes odd noises may be expressed as:the car makes odd noises may be expressed as:

pp(starter is not bad(starter is not bad||odd noises) =odd noises) =
== p p(starter is good(starter is good||odd noises) = 1odd noises) = 1−−0.7 = 0.30.7 = 0.3



   Negnevitsky, Pearson Education, 2002Negnevitsky, Pearson Education, 2002 28

■■ Therefore, we can obtain a companion rule that statesTherefore, we can obtain a companion rule that states
IFIF               the symptom is “odd noises”the symptom is “odd noises”
THEN  the starter is good {with probability 0.3}THEN  the starter is good {with probability 0.3}

■■ Domain experts do not deal with conditionalDomain experts do not deal with conditional
probabilities and often deny the very existence of theprobabilities and often deny the very existence of the
hidden implicit probabilityhidden implicit probability (0.3 in our example). (0.3 in our example).

■■ We would also use available statistical informationWe would also use available statistical information
and empirical studies to derive the following rules:and empirical studies to derive the following rules:

IFIF   the starter is bad  the starter is bad
THEN the symptom is “odd noises” {probability 0.85}THEN the symptom is “odd noises” {probability 0.85}

IFIF   the starter is bad  the starter is bad
THEN the symptom is not “odd noises” {probability 0.15}THEN the symptom is not “odd noises” {probability 0.15}
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■■ To use the Bayesian rule, we still need the To use the Bayesian rule, we still need the priorprior
probabilityprobability, the probability that the starter is bad if, the probability that the starter is bad if
the car does not start. Suppose, the expert supplies usthe car does not start. Suppose, the expert supplies us
the value of 5 per cent.  Now we can apply thethe value of 5 per cent.  Now we can apply the
Bayesian rule to obtain:Bayesian rule to obtain:

( ) 0.23
 0.950.15 + 0.050.85

0.050.85 =
⋅⋅

⋅=noises oddbad is starterp  

■■ The number obtained is significantly lowerThe number obtained is significantly lower
than the expert’s estimate of 0.7 given at thethan the expert’s estimate of 0.7 given at the
beginning of this section.beginning of this section.

■■ The reason for the inconsistency is that the expertThe reason for the inconsistency is that the expert
made different assumptions when assessing themade different assumptions when assessing the
conditional and prior probabilities.conditional and prior probabilities.
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Certainty factors theory andCertainty factors theory and
evidential reasoningevidential reasoning

■■ Certainty factors theory is a popular alternative toCertainty factors theory is a popular alternative to
Bayesian reasoning.Bayesian reasoning.

■■ A A certainty factorcertainty factor ( (cf cf ), a number to measure the), a number to measure the
expert’s belief.  The maximum value of theexpert’s belief.  The maximum value of the
certainty factor is, say, +1.0 (definitely true) andcertainty factor is, say, +1.0 (definitely true) and
the minimum the minimum −−1.0 (definitely false). For example,1.0 (definitely false). For example,
if the expert states that some evidence is almostif the expert states that some evidence is almost
certainly true, a certainly true, a cfcf value of 0.8 would be assigned value of 0.8 would be assigned
to this evidence.to this evidence.
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Uncertain terms and theirUncertain terms and their
interpretation in MYCINinterpretation in MYCIN

Term
Definitely not
Almost certainly not
Probably not
Maybe not
Unknown

Certainty Factor

+0.4
+0.6
+0.8
+1.0

Maybe
Probably
Almost certainly
Definitely

1.0_
0.8_
0.6_
0.4_
0.2 to +0.2_
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■■ In expert systems with certainty factors, theIn expert systems with certainty factors, the
knowledge base consists of a set of rules that haveknowledge base consists of a set of rules that have
the following syntax:the following syntax:

IFIF               <<evidenceevidence>>
THEN  THEN  <<hypothesishypothesis>>  {{cf cf }}

where where cfcf represents belief in hypothesis  represents belief in hypothesis HH given given
that evidence that evidence EE has occurred. has occurred.
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■■ The certainty factors theory is based on two functions:The certainty factors theory is based on two functions:
measure of belief measure of belief MBMB((HH,,EE), and measure of disbelief), and measure of disbelief
MDMD((HH,,EE).).

if p(H ) = 1









MB (H, E) =

1

max [1, 0]  − p(H )
max [  p(H |E), p(H ) ]  − p(H )

otherwise

if p(H ) = 0









MD (H, E) =

1

min [1, 0]  − p(H )
min [  p(H |E), p(H ) ]  − p(H )

otherwise

pp((HH) is the prior probability of hypothesis ) is the prior probability of hypothesis HH being true; being true;
pp((HH||EE) is the probability that hypothesis ) is the probability that hypothesis HH is true given is true given

evidence evidence EE..
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■■ The values of The values of MBMB((HH, , EE) and ) and MDMD((HH, , EE) range) range
between 0 and 1.  The strength of belief orbetween 0 and 1.  The strength of belief or
disbelief in hypothesis disbelief in hypothesis HH depends on the kind of depends on the kind of
evidence evidence EE observed.  Some facts may increase the observed.  Some facts may increase the
strength of belief, but some increase the strength ofstrength of belief, but some increase the strength of
disbelief.disbelief.

■■ The total strength of belief or disbelief in aThe total strength of belief or disbelief in a
hypothesis:hypothesis:

( ) ( )
( ) ( )[ ]EH, MD,EH,MBmin-

EH,MDEH,MB = cf
1

−
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■■ Example:Example:
Consider a simple rule:Consider a simple rule:
IFIF               AA is  is XX
THEN  THEN  BB is  is YY
An expert may not be absolutely certain that this ruleAn expert may not be absolutely certain that this rule
holds.  Also suppose it has been observed that in someholds.  Also suppose it has been observed that in some
cases, even when the IF part of the rule is satisfied andcases, even when the IF part of the rule is satisfied and
object Aobject A takes on  takes on value Xvalue X, object , object BB can acquire some can acquire some
different value different value ZZ..
IFIF               AA is  is XX
THEN  THEN  BB is  is YY { {cfcf 0.7}; 0.7};

              BB is  is ZZ { {cfcf 0.2} 0.2}
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■■ The certainty factor assigned by a rule is propagatedThe certainty factor assigned by a rule is propagated
through the reasoning chain.  This involvesthrough the reasoning chain.  This involves
establishing the net certainty of the rule consequentestablishing the net certainty of the rule consequent
when the evidence in the rule antecedent is uncertain:when the evidence in the rule antecedent is uncertain:
cf cf ((HH,,EE) = ) = cf cf ((EE) ) ××××××××  cfcf
For example,For example,
IFIF       sky is clear      sky is clear
THEN  the forecast is sunny {THEN  the forecast is sunny {cfcf 0.8} 0.8}
and the current certainty factor of and the current certainty factor of sky is clearsky is clear is 0.5 is 0.5,,
thenthen
cf cf ((HH,,EE) = 0.5 ) = 0.5 ⋅⋅  0.8 = 0.40.8 = 0.4
This result can be interpreted as This result can be interpreted as “It may be sunny”“It may be sunny”..
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■■ For conjunctive rules such asFor conjunctive rules such as

the certainty of hypothesis the certainty of hypothesis HH, is established as follows:, is established as follows:
cf cf ((HH,,EE11∩∩∩∩∩∩∩∩EE22∩∩∩∩∩∩∩∩ ......∩∩∩∩∩∩∩∩EEnn) = ) = minmin [ [cf cf ((EE11), ), cf cf ((EE22),...,),..., cf  cf ((EEnn)] )] ××××××××  cfcf
For example,For example,
IFIF       sky is clear      sky is clear
AND    the forecast is sunnyAND    the forecast is sunny
THEN  the action is ‘wear sunglasses’ {THEN  the action is ‘wear sunglasses’ {cfcf 0.8} 0.8}
and the certainty of and the certainty of sky is clearsky is clear is 0.9 is 0.9 and the certainty of the and the certainty of the
forecast of sunnyforecast of sunny is 0.7 is 0.7, then, then
cf cf ((HH,,EE11∩∩EE22) = ) = minmin [0.9, 0.7]  [0.9, 0.7] ⋅⋅  0.8 = 0.7 0.8 = 0.7 ⋅⋅  0.8 = 0.560.8 = 0.56

IF <evidence E1>...
AND <evidence En>
THEN <hypothesis H> {cf }
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■■ For disjunctive rules such asFor disjunctive rules such as

the certainty of hypothesis the certainty of hypothesis HH, is established as follows:, is established as follows:
cf cf ((HH,,EE11∪∪∪∪∪∪∪∪ EE22∪∪∪∪∪∪∪∪ ......∪∪∪∪∪∪∪∪ EEnn) = ) = maxmax [ [cf cf ((EE11), ), cf cf ((EE22),...,),..., cf  cf ((EEnn)] )] ××××××××  cfcf
For example,For example,
IFIF       sky is overcast      sky is overcast
OROR       the forecast is rain      the forecast is rain
THEN  the action is ‘take an umbrella’ {THEN  the action is ‘take an umbrella’ {cfcf 0.9} 0.9}
and the certainty of and the certainty of sky is overcastsky is overcast is 0.6 is 0.6 and the certainty of and the certainty of
the the forecast of rainforecast of rain is 0.8 is 0.8, then, then
cf cf ((HH,,EE11∪∪ EE22) = ) = maxmax [0.6, 0.8]  [0.6, 0.8] ⋅⋅  0.9 = 0.8 0.9 = 0.8 ⋅⋅  0.9 = 0.720.9 = 0.72

IF <evidence E1>...
OR <evidence En>
THEN <hypothesis H> {cf }
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■■ When the same consequent is obtained as a result ofWhen the same consequent is obtained as a result of
the execution of two or more rules, the individualthe execution of two or more rules, the individual
certainty factors of these rules must be merged tocertainty factors of these rules must be merged to
give a combined certainty factor for a hypothesis.give a combined certainty factor for a hypothesis.

Suppose the knowledge base consists of the followingSuppose the knowledge base consists of the following
rules:rules:
Rule Rule 1:1: IFIF       AA is  is XX

THEN  THEN  CC is  is ZZ { {cfcf 0.8} 0.8}

Rule Rule 2:2: IFIF       BB is  is YY
THEN  THEN  CC is  is ZZ { {cfcf 0.6} 0.6}

What certainty should be assigned to object What certainty should be assigned to object CC
having value having value ZZ if both  if both RuleRule 1 and  1 and RuleRule 2 are fired? 2 are fired?
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CCommon sense suggests that, if we have twoommon sense suggests that, if we have two
pieces of evidence (pieces of evidence (AA is  is XX and  and BB is  is YY) from) from
different sources (different sources (RuleRule 1 and  1 and RuleRule 2) supporting 2) supporting
the same hypothesis (the same hypothesis (CC is  is ZZ), then the confidence), then the confidence
in this hypothesis should increase and becomein this hypothesis should increase and become
stronger than if only one piece of evidence hadstronger than if only one piece of evidence had
been obtained.been obtained.
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To calculate a combined certainty factor we canTo calculate a combined certainty factor we can
use the following equation:use the following equation:

where:where:
cfcf11 is the confidence in hypothesis  is the confidence in hypothesis HH established by  established by RuleRule 1; 1;
cfcf22 is the confidence in hypothesis  is the confidence in hypothesis HH established by  established by RuleRule 2; 2;
||cfcf11||  and and ||cfcf22||  are absolute magnitudes of are absolute magnitudes of cfcf11 and  and cfcf22,,

respectively.respectively.

if cf1 > 0 and cf2 > 0











 cf1 + cf2 × (1 − cf1)

cf (cf1, cf2) =
1 − min [|cf1|, |cf1|]

cf1 + cf2

cf1 + cf2 × (1 + cf1)

if cf1 < 0 or cf2 < 0

if cf1 < 0 and cf2 < 0
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The certainty factors theory provides a The certainty factors theory provides a practicalpractical
alternative to Bayesian reasoning.  The heuristicalternative to Bayesian reasoning.  The heuristic
manner of combining certainty factors is differentmanner of combining certainty factors is different
from the manner in which they would be combinedfrom the manner in which they would be combined
if they were probabilities. The certainty theory isif they were probabilities. The certainty theory is
not “mathematically pure” but does mimic thenot “mathematically pure” but does mimic the
thinking process of a human expert.thinking process of a human expert.
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Comparison of Bayesian reasoningComparison of Bayesian reasoning
and certainty factorsand certainty factors

■■ Probability theory is the oldest and best-establishedProbability theory is the oldest and best-established
technique to deal with inexact knowledge andtechnique to deal with inexact knowledge and
random data.  It works well in such areas asrandom data.  It works well in such areas as
forecasting and planning, where statistical data isforecasting and planning, where statistical data is
usually available and accurate probabilityusually available and accurate probability
statements can be made.statements can be made.
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■■ However, in many areas of possible applications ofHowever, in many areas of possible applications of
expert systems, reliable statistical information is notexpert systems, reliable statistical information is not
available or we cannot assume the conditionalavailable or we cannot assume the conditional
independence of evidence.  As a result, manyindependence of evidence.  As a result, many
researchers have found the Bayesian methodresearchers have found the Bayesian method
unsuitable for their work.  This dissatisfactionunsuitable for their work.  This dissatisfaction
motivated the development of the certainty factorsmotivated the development of the certainty factors
theory.theory.

■■ Although the certainty factors approach lacks theAlthough the certainty factors approach lacks the
mathematical correctness of the probability theory,mathematical correctness of the probability theory,
it outperforms subjective Bayesian reasoning init outperforms subjective Bayesian reasoning in
such areas as diagnostics.such areas as diagnostics.
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■■ Certainty factors are used in cases where theCertainty factors are used in cases where the
probabilities are not known or are too difficult orprobabilities are not known or are too difficult or
expensive to obtain. The evidential reasoningexpensive to obtain. The evidential reasoning
mechanism can manage incrementally acquiredmechanism can manage incrementally acquired
evidence, the conjunction and disjunction ofevidence, the conjunction and disjunction of
hypotheses, as well as evidences with differenthypotheses, as well as evidences with different
degrees of belief.degrees of belief.

■■ The certainty factors approach also provides betterThe certainty factors approach also provides better
explanations of the control flow through a rule-explanations of the control flow through a rule-
based expert system.based expert system.
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■■ The Bayesian method is likely to be the mostThe Bayesian method is likely to be the most
appropriate if reliable statistical data exists, theappropriate if reliable statistical data exists, the
knowledge engineer is able to lead, and the expert isknowledge engineer is able to lead, and the expert is
available for serious decision-analyticalavailable for serious decision-analytical
conversations.conversations.

■■ In the absence of any of the specified conditions,In the absence of any of the specified conditions,
the Bayesian approach might be too arbitrary andthe Bayesian approach might be too arbitrary and
even biased to produce meaningful results.even biased to produce meaningful results.

■■ The Bayesian belief propagation is of exponentialThe Bayesian belief propagation is of exponential
complexity, and thus is impractical for largecomplexity, and thus is impractical for large
knowledge bases.knowledge bases.


