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Lecture 4Lecture 4
Fuzzy expert systems:Fuzzy expert systems:
Fuzzy logicFuzzy logic
■■ Introduction, or what is fuzzy thinking?Introduction, or what is fuzzy thinking?
■■ Fuzzy setsFuzzy sets
■■ Linguistic variables and hedgesLinguistic variables and hedges
■■ Operations of fuzzy setsOperations of fuzzy sets
■■ Fuzzy rulesFuzzy rules
■■ SummarySummary



   Negnevitsky, Pearson Education, 2002Negnevitsky, Pearson Education, 2002 2

Introduction, or Introduction, or whatwhat is  is fuzzyfuzzy  thinkingthinking??
■■ Experts Experts rely on rely on commoncommon sense sense when they solve when they solve

problems.problems.
■■ HowHow can we represent expert knowledge that can we represent expert knowledge that

uses vague and ambiguous terms in a computeruses vague and ambiguous terms in a computer??
■■ Fuzzy logic is not logic that is fuzzy, but logic thatFuzzy logic is not logic that is fuzzy, but logic that

is used to describe fuzziness.  Fuzzy logic is theis used to describe fuzziness.  Fuzzy logic is the
theory of fuzzy sets, sets that calibrate vagueness.theory of fuzzy sets, sets that calibrate vagueness.

■■ Fuzzy logic is based on the idea that all thingsFuzzy logic is based on the idea that all things
admit of degrees.  Temperature, height, speed,admit of degrees.  Temperature, height, speed,
distance, beauty distance, beauty −− all come on a sliding scale.  The all come on a sliding scale.  The
motor is running motor is running really hotreally hot.  Tom is a .  Tom is a very tallvery tall guy. guy.
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■■ Boolean logic uses sharp distinctions.  It forces usBoolean logic uses sharp distinctions.  It forces us
to draw lines between members of a class and non-to draw lines between members of a class and non-
members. For instance, we may say, Tom is tallmembers. For instance, we may say, Tom is tall
because his height is 181 cm.  If we drew a line atbecause his height is 181 cm.  If we drew a line at
180 cm, we would find that David, who is 179 cm,180 cm, we would find that David, who is 179 cm,
is small.  Is David really a small man or we haveis small.  Is David really a small man or we have
just drawn an arbitrary line in the sand?just drawn an arbitrary line in the sand?

■■ Fuzzy logic reflects how people think.  It attemptsFuzzy logic reflects how people think.  It attempts
to model our sense of words, our decision makingto model our sense of words, our decision making
and our common sense.  As a result, it is leading toand our common sense.  As a result, it is leading to
new, more human, intelligent systems.new, more human, intelligent systems.
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■■ Fuzzy, or multi-valued logic was introduced in theFuzzy, or multi-valued logic was introduced in the
1930s by 1930s by Jan LukasiewiczJan Lukasiewicz, a Polish philosopher., a Polish philosopher.
While classical logic operates with only two valuesWhile classical logic operates with only two values
1 (true) and 0 (false), Lukasiewicz introduced logic1 (true) and 0 (false), Lukasiewicz introduced logic
that extended the range of truth values to all realthat extended the range of truth values to all real
numbers in the interval between 0 and 1.  He used anumbers in the interval between 0 and 1.  He used a
number in this interval to represent the number in this interval to represent the possibilitypossibility
that a given statement was true or false.  Forthat a given statement was true or false.  For
example, the possibility that a man 181 cm tall isexample, the possibility that a man 181 cm tall is
really tall might be set to a value of 0.86.  It isreally tall might be set to a value of 0.86.  It is
likelylikely that the man is tall.  This work led to an that the man is tall.  This work led to an
inexact reasoning technique often called inexact reasoning technique often called possibilitypossibility
theorytheory..
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■■ Later, in 1937, Later, in 1937, Max Max BlackBlack published a paper called published a paper called
“Vagueness: an exercise in logical analysis“Vagueness: an exercise in logical analysis”.  In”.  In
this paperthis paper, he argued that a continuum implies, he argued that a continuum implies
degrees.  Imagine, he said, a line of countlessdegrees.  Imagine, he said, a line of countless
“chairs”.  At one end is a Chippendale.  Next to it is“chairs”.  At one end is a Chippendale.  Next to it is
a near-Chippendale, in fact indistinguishable froma near-Chippendale, in fact indistinguishable from
the first item.  Succeeding “chairs” are less and lessthe first item.  Succeeding “chairs” are less and less
chair-like, until the line ends with a log.  Whenchair-like, until the line ends with a log.  When
does a does a chairchair become a  become a loglog? ?  Max Black stated that Max Black stated that
if a continuum is discrete, a number can beif a continuum is discrete, a number can be
allocated to each element.allocated to each element.  He accepted He accepted vaguenessvagueness
as a matter of probabilityas a matter of probability..
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■■ In 1965In 1965  Lotfi ZadehLotfi Zadeh, published his famous paper, published his famous paper
“Fuzzy sets”.“Fuzzy sets”.  Zadeh  Zadeh extended the work on extended the work on
possibility theory into a formal system ofpossibility theory into a formal system of
mathematical logic, and introduced a new conceptmathematical logic, and introduced a new concept
for applying natural language terms.  This newfor applying natural language terms.  This new
logic for representing and manipulating fuzzy termslogic for representing and manipulating fuzzy terms
was called was called fuzzy logicfuzzy logic, and, and Zadeh Zadeh became the became the
Master of Master of fuzzy logicfuzzy logic..
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■■ Why fuzzy?Why fuzzy?
As Zadeh said, the term is concrete, immediate andAs Zadeh said, the term is concrete, immediate and
descriptive; we all know what it means.  However,descriptive; we all know what it means.  However,
many people in the West were repelled by the wordmany people in the West were repelled by the word
fuzzyfuzzy, because it is usually used in a negative sense., because it is usually used in a negative sense.

■■ Why logic?Why logic?
Fuzziness rests on fuzzy set theory, and fuzzy logicFuzziness rests on fuzzy set theory, and fuzzy logic
is just a small part of that theory.is just a small part of that theory.
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Fuzzy logic is Fuzzy logic is a set of mathematicala set of mathematical principles principles
for knowledge representation based on degreesfor knowledge representation based on degrees
of of membership.membership.

Unlike two-valued Boolean logic, fuzzy logic isUnlike two-valued Boolean logic, fuzzy logic is
multi-valuedmulti-valued.  It deals with .  It deals with degrees ofdegrees of
membershipmembership and  and degrees of truthdegrees of truth.  Fuzzy logic.  Fuzzy logic
uses the continuum of logical values between 0uses the continuum of logical values between 0
(completely false) and 1 (completely true).  Instead(completely false) and 1 (completely true).  Instead
of just black and white, it employs the spectrum ofof just black and white, it employs the spectrum of
colours, accepting that things can be partly true andcolours, accepting that things can be partly true and
partly false at the same time.partly false at the same time.
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Range of logical values in Boolean and fuzzy logicRange of logical values in Boolean and fuzzy logic

(a)  Boolean Logic. (b)  Multi-valued Logic.
0  1 10 0.2 0.4 0.6 0.8 100 1 10
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Fuzzy Fuzzy setssets

■■ The concept of a The concept of a setset is fundamental to is fundamental to
mathematics.mathematics.

■■ However, our own languageHowever, our own language  is alsois also the supreme the supreme
expression of sets. For example, expression of sets. For example, carcar indicates the indicates the
set of carsset of cars. When we say . When we say a cara car, we mean one out of, we mean one out of
the set of cars.the set of cars.
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■■ The classical example The classical example in fuzzyin fuzzy  setssets  is is talltall men men..
The elements of the fuzzy set “tall men” are allThe elements of the fuzzy set “tall men” are all
men, but their degrees of membership depend onmen, but their degrees of membership depend on
their height.their height.

Degree of Membership
Fuzzy

Mark
John
Tom

Bob

Bill

1
1
1
0
0

1.00
1.00
0.98
0.82
0.78

Peter

Steven

Mike
David

Chris
Crisp

1

0
0
0
0

0.24
0.15
0.06
0.01
0.00

Name Height, cm

205
198
181

167

155
152

158

172
179

208
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0.6

0.8

Height, cm

Fuzzy Sets

Crisp Sets

Crisp and fuzzy sets of “Crisp and fuzzy sets of “tall mentall men””
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■■ The The xx-axis represents the -axis represents the universe of discourseuniverse of discourse  −−
the range of all possible values applicable to athe range of all possible values applicable to a
chosen variable.  In our case, the variable is the manchosen variable.  In our case, the variable is the man
height.  According to this representation, theheight.  According to this representation, the
universe of men’s heights consists of all tall men.universe of men’s heights consists of all tall men.

■■ The The yy-axis represents the -axis represents the membership value of themembership value of the
fuzzy setfuzzy set.  In our case, the fuzzy set of “.  In our case, the fuzzy set of “tall mentall men””
maps height values into corresponding membershipmaps height values into corresponding membership
values.values.
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AA fuzzy set  fuzzy set isis a set with fuzzy boundaries. a set with fuzzy boundaries.
■■ LetLet  XX be the universe of discourse and its elements be the universe of discourse and its elements

be denoted as be denoted as xx.  In the classical set theory, .  In the classical set theory, crispcrisp
set set AA of  of XX is defined as function is defined as function  ffAA((xx))  called thecalled the
characteristic function of characteristic function of AA

ffAA((xx): ): XX  →→ {0, 1},  {0, 1},  where where




∉
∈

=
Ax
Ax

xfA  if0,
 if 1,

)(

This set maps universe This set maps universe XX to a set of two elements. to a set of two elements.
For any element For any element xx of universe  of universe XX, characteristic, characteristic
functionfunction  ffAA((xx) is equal to 1 if ) is equal to 1 if xx is an element of set is an element of set
AA, and is equal to 0 if , and is equal to 0 if xx is not an element of  is not an element of AA..
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■■ In the fuzzy theory, fuzzy set In the fuzzy theory, fuzzy set AA of universe  of universe XX is is
defined by function defined by function µµAA((xx) called the ) called the membershipmembership
functionfunction of set  of set AA

µµAA((xx): ): XX  →→ [0, 1 [0, 1], where], where    µµAA((xx) = 1 if ) = 1 if xx is totally in  is totally in AA;;
                              µµAA((xx) = 0 if ) = 0 if xx is not in  is not in AA;;
        0        0 <  < µµAA((xx) < 1 if ) < 1 if xx is partly in  is partly in AA..

ThisThis set allows a continuum of possible choices. set allows a continuum of possible choices.
For any element For any element xx of universe  of universe XX, membership, membership
function function µµAA((xx) equals the degree to which ) equals the degree to which xx is an is an
element of set element of set AA.  This degree, a value between 0.  This degree, a value between 0
and 1, represents the and 1, represents the degree of membershipdegree of membership, also, also
called called membership valuemembership value, of element , of element xx in set  in set AA..
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How to represent a fuzzy set in a computer?How to represent a fuzzy set in a computer?

■■ First, we determine theFirst, we determine the membership  membership functions. Infunctions. In
our “our “tall mentall men” example, we can obtain fuzzy sets of” example, we can obtain fuzzy sets of
talltall, , shortshort and  and averageaverage men. men.

■■ The universe of discourse The universe of discourse −− the the men’s heights  men’s heights −−
consists of three sets: consists of three sets: shortshort, , averageaverage and  and tall mentall men..
As you will see, aAs you will see, a man who is 184 cm tall is a man who is 184 cm tall is a
member of the member of the average menaverage men set with a degree of set with a degree of
membership of 0.1, and at the same time, he is alsomembership of 0.1, and at the same time, he is also
a member of the a member of the tall mentall men set with a degree of 0.4. set with a degree of 0.4.
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Crisp and fuzzy sets of short, average and tall menCrisp and fuzzy sets of short, average and tall men
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Representation of crisp and fuzzy Representation of crisp and fuzzy subsetssubsets

Fuzzy Subset A

Fuzziness

1

0
Crisp Subset A Fuzziness x

X
µ (x)

Typical functions that can be used to represent a fuzzyTypical functions that can be used to represent a fuzzy
set are sigmoid, gaussian and pi.  However, theseset are sigmoid, gaussian and pi.  However, these
functions increase the time of computation.  Therefore,functions increase the time of computation.  Therefore,
in practice,in practice, most applications use  most applications use linear fit functionslinear fit functions..
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Linguistic Linguistic variablesvariables and  and hedgeshedges

■■ At the root of fuzzy set theory lies the idea ofAt the root of fuzzy set theory lies the idea of
linguistic variableslinguistic variables..

■■ AA linguistic variable is a fuzzy variable. linguistic variable is a fuzzy variable.  For  For
example, the statement “John is tall” implies thatexample, the statement “John is tall” implies that
the linguistic variable the linguistic variable JohnJohn takes the linguistic takes the linguistic
value value talltall..
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In fuzzy expert systems, linguistic variables are usedIn fuzzy expert systems, linguistic variables are used
in fuzzy rules.  For example:in fuzzy rules.  For example:

IFIF         wind is strongwind is strong
THEN  sailing is goodTHEN  sailing is good

IFIF         project_duration is longproject_duration is long
THEN  completion_risk is highTHEN  completion_risk is high

IF         IF           speed is slowspeed is slow
THEN  stopping_distanceTHEN  stopping_distance is short is short
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■■ The range of possible values of a linguistic variableThe range of possible values of a linguistic variable
represents the universe of discourse of that variable.represents the universe of discourse of that variable.
For example, the universe of discourse of theFor example, the universe of discourse of the
linguistic variable linguistic variable speedspeed might have the range might have the range
between 0 and 220 km/h and may include suchbetween 0 and 220 km/h and may include such
fuzzy subsets as fuzzy subsets as very slowvery slow, , slowslow, , mediummedium, , fastfast, and, and
very fastvery fast..

■■ A linguistic variable carries with it the concept ofA linguistic variable carries with it the concept of
fuzzy set qualifiers, called fuzzy set qualifiers, called hedgeshedges..

■■ HedgesHedges are terms that modify the shape of fuzzy are terms that modify the shape of fuzzy
sets.  They include adverbs such as sets.  They include adverbs such as veryvery,,
somewhatsomewhat, , quitequite, , more or lessmore or less and  and slightlyslightly..
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Fuzzy sets with Fuzzy sets with the hedge the hedge veryvery

Short 

Very Tall

Short Tall

Degree of
Membership

150 210180 190 200

1.0

0.0

0.2

0.4

0.6

0.8

160 170
Height, cm

Average

TallVery Short Very Tall
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Representation of hedges in fuzzy logicRepresentation of hedges in fuzzy logic
Hedge Mathematical

Expression

A little

Slightly

Very

Extremely

Hedge Mathematical
Expression Graphical Representation

[µA ( x )]1.3

[µA ( x )]1.7

[µA ( x )]2

[µA ( x )]3
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Representation of hedges in fuzzy Representation of hedges in fuzzy logic (continued)logic (continued)

Hedge Mathematical
ExpressionHedge Mathematical
Expression Graphical Representation

Very very

More or less

Indeed

Somewhat

2 [µA ( x )]2

µA ( x )

µA ( x )

if 0 ≤ µA ≤ 0.5

if 0.5 < µA ≤ 1
1 − 2 [1 − µA ( x )]2

[µA ( x )]4
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Operations of Operations of fuzzy setsfuzzy sets
The classical set theory developed in the late 19thThe classical set theory developed in the late 19th
centurycentury by by Georg Georg Cantor describes how crisp sets  Cantor describes how crisp sets cancan
interact. Theseinteract. These interactions are called  interactions are called operationsoperations..
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Cantor’s setsCantor’s sets

Intersection Union

Complement

Not A

A

Containment

AA

B

BA BAA B
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Crisp SetsCrisp Sets::    Who does not belong to the set?Who does not belong to the set?
Fuzzy SetsFuzzy Sets::    How much do elements not belong toHow much do elements not belong to
the set?the set?
The complementThe complement of a set is an opposite of this set. of a set is an opposite of this set.
For example, if we have the set of For example, if we have the set of tall mentall men, its, its
complement is the set of complement is the set of NOT tall menNOT tall men.  When we.  When we
remove the tall men set from the universe ofremove the tall men set from the universe of
discourse, we obtain the complement.  If discourse, we obtain the complement.  If AA is the is the
fuzzy set, its complement fuzzy set, its complement ¬¬ AA can be found as can be found as
follows:follows:

µ¬µ¬ AA((xx) = 1 ) = 1 −−  µµAA((xx))

■■ ComplementComplement
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Crisp SetsCrisp Sets::    Which sets belong to which other sets?Which sets belong to which other sets?
Fuzzy SetsFuzzy Sets::    Which sets belong to other sets?Which sets belong to other sets?
Similar to a Chinese box, a set can contain otherSimilar to a Chinese box, a set can contain other
sets.  The smaller set is called the sets.  The smaller set is called the subsetsubset.  For.  For
example, the set of example, the set of tall mentall men contains all tall men; contains all tall men;
very tall menvery tall men is a subset of  is a subset of tall mentall men.  However, the.  However, the
tall mentall men set is just a subset of the set of  set is just a subset of the set of menmen.  In.  In
crisp sets, all elements of a subset entirely belong tocrisp sets, all elements of a subset entirely belong to
a larger set. In fuzzy sets, however, each elementa larger set. In fuzzy sets, however, each element
can belong less to the subset than to the larger set.can belong less to the subset than to the larger set.
Elements of the fuzzy subset have smallerElements of the fuzzy subset have smaller
memberships in it than in the larger set.memberships in it than in the larger set.

■■ ContainmentContainment
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Crisp SetsCrisp Sets::    Which element belongs to both sets?Which element belongs to both sets?
Fuzzy SetsFuzzy Sets::  How much of the element is in both sets?How much of the element is in both sets?
In classical set theory, an intersection between twoIn classical set theory, an intersection between two
sets contains the elements shared by these sets. Forsets contains the elements shared by these sets. For
example, the intersection of the set of example, the intersection of the set of tall mentall men and and
the set of the set of fat menfat men is the area where these sets is the area where these sets
overlap.  In fuzzy sets, an element may partlyoverlap.  In fuzzy sets, an element may partly
belong to both sets with different memberships. Abelong to both sets with different memberships. A
fuzzy intersection is the lower membership in bothfuzzy intersection is the lower membership in both
sets of each element. The fuzzy intersection of twosets of each element. The fuzzy intersection of two
fuzzy sets fuzzy sets AA and  and BB on universe of discourse  on universe of discourse XX::
µµµµµµµµAA∩∩∩∩∩∩∩∩BB((xx) = ) = minmin [ [µµµµµµµµAA((xx), ), µµµµµµµµBB((xx)] = )] = µµµµµµµµAA((xx) ) ∩∩∩∩∩∩∩∩   µµµµµµµµBB((xx)),,
where where xx∈∈ XX

■■ IntersectionIntersection
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Crisp SetsCrisp Sets::  Which element belongs to either set?Which element belongs to either set?
Fuzzy SetsFuzzy Sets:: How much of the element is in either set? How much of the element is in either set?
The union of two crisp sets consists of every elementThe union of two crisp sets consists of every element
that falls into either set.  For example, the union ofthat falls into either set.  For example, the union of
tall mentall men and  and fat menfat men contains all men who are tall contains all men who are tall
OROR fat.  In fuzzy sets, the union is the reverse of the fat.  In fuzzy sets, the union is the reverse of the
intersection. That is, the union is the largestintersection. That is, the union is the largest
membership value of the element in either set.membership value of the element in either set.  TheThe
fuzzy operation for forming the union of two fuzzyfuzzy operation for forming the union of two fuzzy
sets sets AA and  and BB on universe  on universe XX can be given as: can be given as:

µµµµµµµµAA∪∪∪∪∪∪∪∪ BB((xx) = ) = maxmax [ [µµµµµµµµAA((xx), ), µµµµµµµµBB((xx)] = )] = µµµµµµµµAA((xx) ) ∪∪∪∪∪∪∪∪   µµµµµµµµBB((xx)),,
where where xx∈∈ XX

■■ UnionUnion
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Operations of Operations of fuzzyfuzzy  setssets

Complement
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µ  ( x  )

0 x

1

Containment

0 x

1

0 x

1

A B

Not A

A

Intersection

0 x

1
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Union
0

1
A B∪
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Fuzzy Fuzzy rulesrules
In 1973,In 1973,  Lotfi ZadehLotfi Zadeh published his second most published his second most
influential paper.  This paper outlined a newinfluential paper.  This paper outlined a new
approach to analysis of complex systems, in whichapproach to analysis of complex systems, in which
ZadehZadeh suggested capturing human knowledge in suggested capturing human knowledge in
fuzzy rules.fuzzy rules.
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What is a fuzzyWhat is a fuzzy  rule?rule?

A fuzzy rule can be defined as a conditionalA fuzzy rule can be defined as a conditional
statement in the form:statement in the form:

IFIF             xx is  is AA
THEN THEN yy is  is BB

where where xx and  and yy are linguistic variables; and  are linguistic variables; and AA and  and BB
are linguistic values determined by fuzzy sets on theare linguistic values determined by fuzzy sets on the
universe of discoursesuniverse of discourses  XX and  and YY, respectively., respectively.
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What is the difference between classical andWhat is the difference between classical and
fuzzy rules?fuzzy rules?
A classical IF-THEN rule uses binary logic, forA classical IF-THEN rule uses binary logic, for
exampleexample,,
Rule: 1Rule: 1
IFIF      speed is > 100     speed is > 100
THEN  stopping_distance is longTHEN  stopping_distance is long

Rule: 2Rule: 2
IFIF      speed is < 40     speed is < 40
THEN  stopping_distance is shortTHEN  stopping_distance is short

The variable The variable speedspeed can have any numerical value can have any numerical value
between 0 and 220 km/h, but the linguistic variablebetween 0 and 220 km/h, but the linguistic variable
stopping_distancestopping_distance can take either value  can take either value longlong or  or shortshort..
In other words, classical rules are expressed in theIn other words, classical rules are expressed in the
black-and-white language of Boolean logic.black-and-white language of Boolean logic.
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We can also represent the stopping distance rules in aWe can also represent the stopping distance rules in a
fuzzy form:fuzzy form:
Rule: 1Rule: 1
IFIF      speed is fast     speed is fast
THEN  stopping_distance is longTHEN  stopping_distance is long

Rule: 2Rule: 2
IFIF      speed is slow     speed is slow
THEN  stopping_distance is shortTHEN  stopping_distance is short

In fuzzy rules, the linguistic variable In fuzzy rules, the linguistic variable speedspeed also has also has
the range (the universe of discourse) between 0 andthe range (the universe of discourse) between 0 and
220 km/h, but this range includes fuzzy sets, such as220 km/h, but this range includes fuzzy sets, such as
slowslow, , mediummedium and  and fastfast.  The universe of discourse of.  The universe of discourse of
the linguistic variable the linguistic variable stopping_distancestopping_distance can be can be
between 0 and 300 m and may include such fuzzybetween 0 and 300 m and may include such fuzzy
sets as sets as shortshort, , mediummedium and  and longlong..
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■■ Fuzzy rules relate fuzzy sets.Fuzzy rules relate fuzzy sets.
■■ InIn a fuzzy system, all rules fire to some extent, a fuzzy system, all rules fire to some extent,

or in other words they fire partially.  If theor in other words they fire partially.  If the
antecedent is true to some degree ofantecedent is true to some degree of
membership, then the consequent is also true tomembership, then the consequent is also true to
that same degreethat same degree.
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Fuzzy sets of Fuzzy sets of talltall and  and heavyheavy men men

These fuzzy sets provide the basis for a weight estimationThese fuzzy sets provide the basis for a weight estimation
model.  The model is based on a relationship between amodel.  The model is based on a relationship between a
man’s height and his man’s height and his weight:weight:

IF         height is IF         height is talltall
THEN  weight isTHEN  weight is  heavyheavy
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The value of the output or a truth membership grade ofThe value of the output or a truth membership grade of
the rule consequent can be estimated directly from athe rule consequent can be estimated directly from a
corresponding truth membership grade in thecorresponding truth membership grade in the
antecedent.  This form of fuzzy inference uses aantecedent.  This form of fuzzy inference uses a
method called method called monotonic selectionmonotonic selection..
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AA fuzzy rule can have multiple antecedents,  fuzzy rule can have multiple antecedents, forfor
exampleexample::

IFIF    project   project_duration is long_duration is long
ANDAND    project   project_staffing is large_staffing is large
ANDAND    project   project_funding is inadequate_funding is inadequate
THEN  riskTHEN  risk is high is high

IFIF    service   service is excellent is excellent
OROR    food   food is delicious is delicious
THEN  tipTHEN  tip is generous is generous
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The consequent of a fuzzy rule can also includeThe consequent of a fuzzy rule can also include
multiple parts, for instance:multiple parts, for instance:

IFIF    temperature   temperature is hot is hot
THEN  hotTHEN  hot_water is reduced;_water is reduced;

   cold   cold_water is increased_water is increased


