| ecture 7

Artificial neural networks:

Supervised learning
= |ntroeduction, or how the brain Works

= [he neuron as a simple computing element

= [he perceptron

= Multilayer neural networks

m Accelerated learning in multilayer neural networks
= [he Hopfield network

s Bidirectional associative memories (BAM)

® Summary

[1 Negnevitsky, Pearson Education, 2002

|ntreduction; or how the Brain Works

Machine learning Invelves adaptive mechanisms
that enable computers tos learn from experience,
learn by example and learn by analogy. Learning
capanilities can improve the performance of an
Intelligent system over time. The most popular
approaches to machine learning are artificial
neural networks and genetic algorithms. This
lecture Is dedicated to neural networks.

[1 Negnevitsky, Pearson Education, 2002

= A neural network can be defined as'a model of
reasoning hased on the human brain. The brain
consists of a densely interconnected set of nerve
cells; or basic infoermation-processing units, called
NEeurons.

The human brain incorporates nearly 10 billion

neurons and 60 trillion connections, synapses,
between them. By using multiple neurons
simultaneously, the brain can perform its functions
much faster than the fastest computers in existence
today.

[1 Negnevitsky, Pearson Education, 2002

s Each neuron has a veny simple structure, but an
army of such elements constitutes a tremendous

Precessing Power.

= A neuron consists of a cellibody, soma, a number of
fibers called dendrites, and a single long fiber

called the axon.

[1 Negnevitsky, Pearson Education, 2002

Biolegical neuralinetworrsk

Synapse

Synapse De nd I iteS

AXon
AXon

Soma — a |

Synapse

Dendrites

[1 Negnevitsky, Pearson Education, 2002

s Our brain can berconsidered asia highly: complex,
non-linear and parallelf information-processing
system.

n Infermation Is stored and processed Inia neural
network simultaneously throughout the whole
network, rather than at specific locations. In other

words, In neural networks, both data and Its
processing are global rather than local.

s Learning Is a fundamental and essential
characteristic of biological neural networks. The
ease with which they can learn led'to attempts to
emulate a biological neural network in a computer.

[1 Negnevitsky, Pearson Education, 2002

= An artificial neural network coensists; off a numker of
very simple processors, also called neurens, which
are analogous to the bielogical neurons In the brain.

m ['he neurons are connected by weighted links
passing signals frem one neuron te;another.

s [he output signal Is transmitted through the

Neuron’s outgoing connection. The outgoing
connection splits into a number of branches that
transmit the same signal. The outgeing branches
terminate at the incoming connections of other
neurons In the network.

[1 Negnevitsky, Pearson Education, 2002

Architecture of a typical artificial neural network

.

Input Signals

(7p)
©
c
(@)
)
]
-
(@R
]
-
O

‘ Middle Layer

Input Layer Output Layer

[1 Negnevitsky, Pearson Education, 2002

Analogy letween bielogical anad
artificialineural networks

Biological Neural Network Artificial Neural Network

Soma
Dendrite
AXon
Synapse

[1 Negnevitsky, Pearson Education, 2002

The netron as a simple computing element

Diagram of a neuron

Input Signals Weights Output Signals

X1 Y

[1 Negnevitsky, Pearson Education, 2002

= [he neuron computes the weighted sum;of the Input
signals and compares; the result with a threshold
value, 6. Ifithe net iput Is less than the threshold,
the neuron output Is —1. But I the net input IS greater
than or egual to the threshoeld, the neuron becomes
activated and Its output attains a value +1.

= [he neuron uses the following transfer or activation
function:

= This type of activation function Is called a sign
function.

[1 Negnevitsky, Pearson Education, 2002

Activation functions;of a neuren

Step function

Ya

Sign function

Ya
+1

Ysig

h BHLif X 20

TLif X<0

Sigmoid function

Y a

ySigmoid_ 1
1+e

X

Linear function

Ya

[1 Negnevitsky, Pearson Education, 2002

Can a single neurontlearn a task?

= In 1958, Frank Rosenblatt introduced a traming
algorithm that provided the first procedure for
training a simple ANN: a perceptron.

m [he perceptron Is the simplest form ofi a neural
network. It consists of a single neuron with
adjustable synaptic weights and a hard limiter.

[1 Negnevitsky, Pearson Education, 2002

Single-layer two-1nput perceptron

Linear Hard
Combiner Limiter
Output

> Y

[1 Negnevitsky, Pearson Education, 2002

The Perceptron

a | he operation of Rosenblatt’s perceptron Is based
on the McCulloch and Pittsineuron model. The

model consists of a linear combiner followed by a
hard limiter.

= [he weighted sum of the inputs Is applied to the
hard limiter, which produces an output equal to +1
IT Its Input Is positive and =1 If It IS negative.

[1 Negnevitsky, Pearson Education, 2002

= [he aim of the perceptron Is to classify Inputs,
X1y Xoy - - -, %o, INtO ONE Off tWO Classes; say
A, and A,.
In the case of an elementary perceptron, the n-
dimensional space Is divided by a hyperplane into

two decision regions. The hyperplane Is defined by
the linearly separable function:

[1 Negnevitsky, Pearson Education, 2002

|_inear separability Inthe perceptrons

Class A, D\ > Xq

2 O

XqWq + XoWy =0 =0 Xq{Wq1 + XoWp + XgW3 =0 =0

(a) Two-input perceptron. (b) Three-input perceptron.

[1 Negnevitsky, Pearson Education, 2002

IHow d@es the'perceptron learn Its classification

tasks?

This I1s done by making small adjustments Inithe
welghts to reduce the difference between the actual

and o

esired outputs of the perceptron. The Initial

welghts are randomly assigned, usually in the range

[-0.5
consi

, 0.5], and then updated to obtain the output
stent with the training examples.

[1 Negnevitsky, Pearson Education, 2002

s IT at iterationi p; theactual output 1S Y(p) and the
desired output IS Y, (jp), then the error IS givenby:

e(p) =Ya(P) =Y (P) BNAETN IR

[teration p here refers to the pth training example
presented to the perceptron.

m If the error, e(p), Is positive, we need to increase
perceptron output Y(p), but If It IS negative, we
need to decrease Y(p).

[1 Negnevitsky, Pearson Education, 2002

Ihe perceptron learning rule

wi(p+1) =w;(p)+ax(p)e(p)

wherep=1, 2,3, ...
o IS the learning rate, a positive constant less than
unity.

The perceptron learning rule was first proposed by
Rosenblatt in 1960. Using this rule we can derive
the perceptron training algorithm for classification
tasks.

[1 Negnevitsky, Pearson Education, 2002

Perceptron s tarining algerithm

Step 1: Initialisation
Set Initial welghts w;, Ws,..., W, and threshold ©
to random numbers In the range [=0.5, 0.5].

If the error, e(p), IS positive, We need to Increase
perceptron output Y(p), but If It Is negative, we
need to decrease Y(p).

[1 Negnevitsky, Pearson Education, 2002

Perceptronrs tarining algerithn (continued)

Step 2: Activation
Activate the perceptron by applying Inputs X,(p);
X5(P)s- -, X-(p) and desired output Y, (p).
Calculate the actual output at Iteration p = 1

[N]
Y(p)=step O) Xj(p)wij(p)-060
Ezl O

where n Is the number of the perceptron inputs,
and step IS a step activation function.

[1 Negnevitsky, Pearson Education, 2002

Perceptron's tarining algerithm (continued)

Step 3: Weight training
Update the weilghts of the perceptron

w;(p+1) =w;(p) +Aw;(p)

where Aw:(p) IS the welght correction at iteration: p.

The weight correction Is computed by the delta
rule:

Aw; (p) =a X (p) e(p)

Step 4: Iteration
Increase iteration p by one, go back to Step 2 and
repeat the process until convergence.

[1 Negnevitsky, Pearson Education, 2002

Example ofi perceptron learning: the logicall operation AND

<

O OO0 OO OrPOO(RPPOO|OPOCO| PPOO|®

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1

PO OO(POOO|POO0OO0O|POODO| POOO

rOoOpFrroO|lrorro|lPrProrrPo|lRPORPL,O| PO O
hPOOO|FRPPOO|IORFRPOO|(FRPRPRPOO|OK OO

[HEN

Threshold: 6 = 0.2; learning rate: o = 0.1

[1 Negnevitsky, Pearson Education, 2002

Two-dimensional plets of basic legical eperations

(&) AND (X1 n X») (b) OR (xq O x5) (c) Exclusive-OR
(xp O x)

A perceptron can learn the operations AND and OR,
but not Exclusive-OR.

[1 Negnevitsky, Pearson Education, 2002

Multiiayer neurali networks

n A multilayer perceptroniis a feedforward neural
network with ene or more hidden layers.

= [he network consists of an Inpuit layer of source
neurens, at least one middle or hidden layer of
computational neurons, and an output layer of
computational neurens.

= [he Input signals are propagated in a forward
direction on a layer-by-layer basis.

[1 Negnevitsky, Pearson Education, 2002

Multiiayer perceptron with tworhidden Iayers

N\

Output Signals

y
Q/
/

%

X
%
4 :")
0‘0

L)

(7))
qe]
c
(@)
(0p)
—
>
o
-

<
[
‘\:;4

)

|

:

|

First Second
hidden hidden

layer layer

[1 Negnevitsky, Pearson Education, 2002

What deesithe middle layer hide?

s A hidden layer “hides™ Its desiredi output.
Neurons In the hidden layer cannot be observed
through the Input/output behaviour of the network.
There Is no obvious way to know: what the desired
output of the hidden layer should be.

s Commercial ANNS incorporate three and
sometimes four layers, including one or two
hidden layers. Eachilayer can contain from 10 to
1000 neurons. Experimental neural networks may
have five or even six layers, including three or
four hidden layers, and utilise millions of neurons.

[1 Negnevitsky, Pearson Education, 2002

Back-prepagation neural netwerk

n Learning In a multilayer network: proceeds; the
same way as for a perceptron.

s A training set ofi Input patterns Is presented to the
network.

= [he network computes Its output pattern, and: if
there IS an error — or In other words a difference

between actual and desired output patterns — the
welghts are adjusted to reduce this error.

[1 Negnevitsky, Pearson Education, 2002

= In a back-propagation neural network:; the learning
algorithm has two phases.

m FIrst, a training input pattern Is presented to the
network input layer. The network propagates the
Input pattern from layer to layer until the output

pattern Is generated by the output layer.

m |f this pattern Is different from the desired output,
an error Is calculated and then propagated
backwards through the network from the output

layer to the input layer. The weights are modified
as the error Is propagated.

[1 Negnevitsky, Pearson Education, 2002

T hreg-layer back-propagation neuiral network

Input signals

Hidden
layer

Error signals

[1 Negnevitsky, Pearson Education, 2002

The back-propagation training algoritham

Step 1: Initialisation
Set all the weights and threshold levels, ofi the
network to randem nuMmbers uniformly.
distributed inside a small range:

where F; Is the total number of inputs of neuron I
In the network. The welght initialisation Is done
on a neuron-by-neuron basis.

[1 Negnevitsky, Pearson Education, 2002

Step 2: Activation
Activate the back-propagation neural network by

applying mputs x,(p), X,(p)s---, X.(p) and desiread
OUtpUts Yy 1(P), Vg 2(P):-- -+ Y ,n(P)-

(@) Calculate the actual outputs of the neurens In
the hidden layer:

[]n
Yj(p) = sigmoid Ty x;(p)W; (p) =0,
=1

where n Is the number of Inputs of neuron j In the
hidden layer, and sigmoid IS the sigmoid activation
function.

[1 Negnevitsky, Pearson Education, 2002

Step 2: Activation (continued)
(b) Calculate the actualioutputs of the neurens In
the output layer:

[Im
Yk (p) = sigmoid %z Xijk (P) W (p) — B
L

where m IS the number of Inputs of neuron k Inithe
output layer.

[1 Negnevitsky, Pearson Education, 2002

Step 3: Welght training
Update the weights 1n the back-propagation network
propagating hackwand the errors asseciated with
Qutput neurens.
(@) Calculate the error gradient fior the neurens In the
output layer:

Sk () = yi (p) HL— vy (p)] By (p)

ex (P) =Yg k(P)—Yk(p)

Calculate the weight corrections:
Awj (p) =a Ly (p) [y (p)
Update the weights at the output neurons:

Wi, (P +1) = wj, (p) + Awj (p)

[1 Negnevitsky, Pearson Education, 2002

Step 3: Welght training (continued)

(b) Calculate the errer gradient for the neurensin
the hidden layer:

|
0j(p)=yj(P)HL-y;(P]D Sk (p) Wi (p)
k=1

Calculate the weilght corrections:
Awi; (p) =a X (p) o (p)
Update the weights at the hidden neurons:

wij (P +1) = wjj (p) + Aw;; (p)

[1 Negnevitsky, Pearson Education, 2002

Step 4: Iteration

Increase iteration| p by one, go back to Step 2 and

repeat the process until the selected error criterion
IS satisfied.

As an example, we may consider the three-layer

back-propagation network. Suppose that the
network Is required to perform logical operation
Exclusive-OR. Recall that a single-layer perceptron
could not do this operation. Now we will apply the
three-layer net.

[1 Negnevitsky, Pearson Education, 2002

Three-layer network fior selving the
Exclusive-OR operation

Hidden layer

[1 Negnevitsky, Pearson Education, 2002

m [he effiect of the threshold applied to a meuren In the
hidden or eutput layer Is represented by its welght, 6,
connected to'a fixed input egual to —1..

a ['he itial' weights and threshold levels are set
randomly: as follows:
Wy, = 0.5, wy, = 0.9, w,, = 0.4, w,, = 1.0, Wy, = 1.2,

w,=11,06,=0.8,6,=-0.1and 6, =0.3.

[1 Negnevitsky, Pearson Education, 2002

= \\/e consider a tralning, set Where Inputs x; and X, are
equal to 1 and desiredioutput y, s Is 0. The actual

outputs of neurons 3'and 4 In the hidden layer are
calculated as

Y3 = sigmoid (XWy3 + XoWo3 —03) = 1/[1+ e—(l[().5+1[0.4—1[0.8)] — 05250

= Now the actual oeutput ofi neuron 5 In the output layer
IS determined as:

Y5 = sigmoid(yswas + YaWys —65) :1/[1+e‘(*’-52503'12+0-88°83'11‘m3>] =0.5097

m [hus, the following error IS obtained:
e =Yq5— Y5 =0-0.5097 = -0.5097

[1 Negnevitsky, Pearson Education, 2002

The next step Isi\welght training.. To update the
welghts and threshold levels in our network, we
propagate the error, e, from the output layer
packward to the Input layer.

=1ist, we calculate the error gradient for neuroen 5 in
the output layer:

s = ys (1— ys) e =0.5097 [{1-0.5097) [{~0.5097) = —0.1274

Then we determinge the weight corrections assuming
that the learning rate parameter, o, Is equal to 0.1:

AWae = [[0 = 0.1[0.5250 [{~0.1274) = -0.0067
Ay =a [y, [=0.1(0.8808 [{~0.1274) = —0.0112
AB: =a [{-1) B =0.10{~1) [{-0.1274) = -0.0127

[1 Negnevitsky, Pearson Education, 2002

s Next we calculate the error gradients for neurons 3
and 4 1n the hidden layer:

5s = Ya(L- y3) [Bs (Wyg =0.5250 ({1 0.5250) [{ - 0.1274) [{ —1.2) = 0.0381
54 =Ya (1_ y4) @5 EVV45 =(0.8808 ml_ 08808) m —-0.127 4) [1.1=-0.0147

n \WWe then determine the weight corrections:

Awys = a O B = 0.10100.0381 = 0.0038

AW23 =a D(z @3 =0.1[100.0381 =0.0038

A6, = a [-1) B, = 0.10{~1)[0.0381 = ~0.0038
AW14 =qa D(l @4 = OlIZIlQ—OOl47) =-0.0015
AW,y =a (X, (B, =0.1010{-0.0147) = —0.0015
A6, =a [{~1) [, = 0.10(~1) [{~0.0147) = 0.0015

[1 Negnevitsky, Pearson Education, 2002

n At last, we tpdate alliwelghts and threshold:

Wis = Wig +Awgg =0.5+0.0038 =0.5038
Wig =Wy +Awy, =0.9-0.0015 =0.8985
Wy3 = Wog + Awyg = 0.4 +0.0038 = 0.4038
Woy = Woy + Do, =1.0—0.0015 = 0.9985
W35 = Wgs + Awgeg = —1.2-0.0067 = —1.2067
Wys = Wys +Awys =1.1-0.0112 =1.0888

6, =6, +A8; =0.8-0.0038 =0.7962
6,=6,+A8, =-0.1+0.0015 = —0.0985

0 =0, +A6; =0.3+0.0127 =0.3127

= [he training process Is repeated until the sum of
squared errors Is less than 0.001.

[1 Negnevitsky, Pearson Education, 2002

|_earning curVve: for operation Exclusive-OR

Sum-Squared Network Error for 224 Epochs

H
o
R

|
o
N

| .
o
[
Ll
o
L
©
=
o
<P
S
S
w

[1 Negnevitsky, Pearson Education, 2002

Einal‘results ofi thiree-layer network learning

Desired Actual Sum of
output output squared
Vs errors

0.0155 0.0010
0.9849
0.9849

0.0175

[1 Negnevitsky, Pearson Education, 2002

Netwoerk represented by MceCullech-Pitts model
for selving|the Exclusive-OR operation

[1 Negnevitsky, Pearson Education, 2002

[DecIsion boundaries

(a) Decision boundary constructed by hidden neuron 3;

(b) Decision boundary constructed by hidden neuron 4;

(c) Decision boundaries constructed by the complete
three-layer network

[1 Negnevitsky, Pearson Education, 2002

Accelerated learningiin multilayer
neuralinetworks

a A multilayer network learns much faster when the
sigmoidal activation function Is represented by a
hyperhbolic tangent:

where a and b are constants.

Suitable values for a and b are:
a=1.716 and b = 0.667

[1 Negnevitsky, Pearson Education, 2002

m \We alseican accelerate training by, Including a
momentum term in the delta rule:

ijk(p) =,3ij|<(|3—1)+0 Eyj(p)mk(p)

where [5 IS a positive number (0 < 3 < 1) called the

momentum constant. Typically, the momentum
constant Is set to 0.95.

This eguation Is called the generalised delta rule.

[1 Negnevitsky, Pearson Education, 2002

_earningiwith momentum for eperation Exclusive-OR

Training for 126 Epochs

S
o
S
L
o
o
©
S
o
<P
S
S
n

Leamning Rate

[1 Negnevitsky, Pearson Education, 2002

Cearning With adaptive learning rate

0 accelerate the convergence and yet avoidithe
danger of instability, we cam apply two heuristics:

Heuristic 1

[T the change of the sum of sguared errors has the same
algebraic sign for several consequent epochs, then the
learning rate parameter, a, should be Iincreased.

Heuristic 2

If the algebraic sign of the change of the sum of
squared errors alternates for several consequent

epochs, then the learning rate parameter, a, should be
decreased.

[1 Negnevitsky, Pearson Education, 2002

s Adapting the'learning rate requires seme changes
In the back-propagation algorithm.

s If the sum of sguared errors at the curment epoch
exceeds the previous value by more than a
predefined ratio (typically 1.04), the learning; rate
parameter Is decreased (typically by multiplying

by 0.7) and new weights and thresholds are
calculated.

m If the error Is less than the previous one, the
learning rate Is increased (typically by multiplying
by 1.05).

[1 Negnevitsky, Pearson Education, 2002

[“earning withiadaptive learning rate

Training for 103 Epochs

Sum-Squared Erro|

o o o
A~ O o0

Learning Rate

o
N

o

[1 Negnevitsky, Pearson Education, 2002

|_earning withimementum and adaptive learning rate

Training for 85 Epochs

=
o
o

e
o O
RN

Sum-Squared Erro
H
o

|
o
IN

Learning Rate

[1 Negnevitsky, Pearson Education, 2002

The Hopfield Network

s Neural networks were designed on analogy: With
the brain. The brain®s memony, however, Works
Dy association. For example, wWe can recognise a
familiar face even inan unfamiliar environment
within 100-200 ms. We can also recall a
complete sensory experience, including sounds
and scenes, when we hear only a few bars of
music. The brain routinely associates one thing
with another.

[1 Negnevitsky, Pearson Education, 2002

s Multilayer neural networks trained withithe hacks-
propagationalgorithm are used for pattern
iecognition problems. However, to emulate the
Auman memory’s assoclative characteristics we
need a different type of network: a recurrent
neural network.

A recurrent neural network has feedback loops
from Its outputs to Its Inputs. The presence of
such loops has a profound impact on the learning
capability of the network.

[1 Negnevitsky, Pearson Education, 2002

s [he stability of recurrent networks Intrigued
several researchers in the 1960s and 1970s.
IHowever, none was able to predict which network
would be stable, and some researchers were
pessimistic about finding a selution at all. The

problem was solved only in 1982, when John
Hopfield formulated the physical principle of
storing Information in a dynamically stable
network.

[1 Negnevitsky, Pearson Education, 2002

Single-layer n-neuron Hopfield network

<<
[N

<<
N

=

(Vp]
©
-
(@))
V)
i)
>
o
-

Output Signals

<<
>

[1 Negnevitsky, Pearson Education, 2002

s [he Hopfield network uses McCulloch anal Pitts
neurens with thersign activation fnction as Its
computing element:

#1 if X >0
Yﬂwzgqux<o

HY, if X =0

[1 Negnevitsky, Pearson Education, 2002

= [he current state of the Hopfield network Is
determined by the current outputs of all neuroens,

Vs Yor « v oy Yoo

Thus, for a single-layer n-neuron network, the state
can be defined by the state vector as:

[1 Negnevitsky, Pearson Education, 2002

n In the Hopfield network, synaptic Weights between
neurons are usually represented 1n matrix fiorm: as
follows:

where M IS the number of states to be memorised

by the network, Y. IS the n-dimensional binary
vector, I'Is n x n identity matrix, and superscript T
denotes a matrix transposition.

[1 Negnevitsky, Pearson Education, 2002

Possible states for the three-neuron
Hopfield network

[1 Negnevitsky, Pearson Education, 2002

m [he stable state-vertex Is determined by the weight
matrix W, the current Input vector X, andithe
threshold matrix ©. If the input vector Is partially
Incorrect or incomplete, the mitial state will converge
Into the stable state-vertex after a few iterations.

= SuUppose, for Instance, that our network Is reguired to
memorise two opposite states, (1, 1, 1) and (=1, =1, —=1).

or IR

where Y, and Y, are the three-dimensional vectors.

[1 Negnevitsky, Pearson Education, 2002

s [he 3% 3 identity matrix | IS

= ['hus, we can now determine the weight matrix as
follows:

+107] 1 0 00 2 200

W= %@111]+—1%1—1 -1-200 1 02 0 27
=1 @015@205

= Next, the network Is tested by the sequence of Iinput
vectors, X; and X,, which are equal to the output (or
target) vectors Y, and Y, respectively.

[1 Negnevitsky, Pearson Education, 2002

First, We activate the Hopfield network by applying
the Input veetor X. Then, we calculate the actual
eutput vector Y, and finally, we compare the result

with the itial input vector X.

0 2 2010 o Ao

OEHE B

weint o i

[0 2 20310 00 310
\C :sign§ 0 2%—1%—%) = %1%
2 OHF1g B =14

[1 Negnevitsky, Pearson Education, 2002

= [he remaining six states are all'unstable. IHowever,
stable states (also called fiundamental memoeries) are
capable of attracting states that are close to them.

The fundamental memory. (1, 1, 1) attracts unstable
states (=1, 1, 1), (1, =1, 1) and (1, 1, =1). Each of
these unstable states represents a single error,

compared to the fundamental memory (1, 1, 1).

The fundamental memory (=1, -1, =1) attracts
unstable states (=1, =1, 1), (=1, 1, —=1) and (1, -1, —1).

Thus, the Hopfield network can act as an error
correction network.

[1 Negnevitsky, Pearson Education, 2002

Storage capacity of the Hopfield netwerk

s Storage capacity Is or the largest number of
fundamental memories that can be stored and
retrieved correctly.

= The maximum number of fundamental' memaories
M., that can be stored In the n-neuren recurrent
network Is limited by

M =0.15n

[1 Negnevitsky, Pearson Education, 2002

Bidirectionallasseciative: memonry: (BAIM)

= [he Hopfield network represents an autoassociative
type of memory — It can retrieve a corrupted or
Incomplete memory but cannot associate this memory.
With another different memory.

Human memory. Is essentially associative. One thing

may remind us of another, and that ofi another, and so
on. We use a chain of mental associations to recover
a lost memory. If we forget where we left an
umbrella, we try to recall’'where we last had It, what
we were doing, and who we were talking to. We
attempt to establish a chain of associations, and
thereby to restore a lost memory.

[1 Negnevitsky, Pearson Education, 2002

m [0 asseciate ene memory with;another, we need a
recurrent neural network capable of aceepting an
Input pattern on ong set off neurons and producing
a related, but different, output pattern on anether
set of neurons.

Bidirectional associative memory (BAM), first

proposed by Bart Kosko, Is a heteroassociative
network. It associates patterns from one set, set A,
to patterns from another set, set B, and vice versa.
Like a Hopfield network, the BAM c¢an generalise
and also produce correct outputs despite corrupted
or incomplete Inputs.

[1 Negnevitsky, Pearson Education, 2002

BAN operation

Input Output Input Output
layer layer layer layer

(a) Forward direction. (b) Backward direction.

[1 Negnevitsky, Pearson Education, 2002

The basic Idea behind the: BAM Isito store
pattern pairs so that when n-dimensional vector
X from set A Is presented as input, the BAM
iecalls m-dimensional vector Y from set B, but
when Y Is presented as input, the BAM recalls X.

[1 Negnevitsky, Pearson Education, 2002

n [0 develop the BAM, we needito create a
correlation matrix for each pattern pair we want te
store. The correlation matrix Is the matrix product
ofi the Input vector X, and the transpose of the
output vector Y'. The BAM weight matrix is the
sum of all correlation matrices, that Is,

where M Is the number of pattern pairs to be stored
In the BAM.

[1 Negnevitsky, Pearson Education, 2002

Stability and storage capacity ofi the' BANV

= [he BAM Is unconditionally stable. This means that
any set ofi assoclations can e learned without risk of
Instability.
TThe maximum number of associations to be stored
In the BAM should not exceed the number of
neurons In the smaller layer.

The more serious problem with the BAM Is
Incorrect convergence. The BAM may not
always produce the closest association. In fact, a
stable association may be only slightly related to
the Initial input vector.

[1 Negnevitsky, Pearson Education, 2002

