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Can evolution be ntelligent?

n Intelligence can lbe defined as the capability of a
System to adapt Its behaviour to ever-changing
environment. According te Alan Turing, the form
Or appearance ofi a system Is Irrelevant to Its
Intelligence.

Evolutionary computation simulates evolution on a
computer. The result of such a simulation Is a
series of optimisation algorithms, usually based on
a simple set of rules. Optimisation iteratively
Improves the quality of solutioens until an optimal,
or at least feasible, solution Is found.
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= [ he behavieur off an individual organism Is an
Inductive inference apeut some et unknewn
aspects of Its envirenment. If, over successive
generations, the organisn Ssunrvives, We can say
that this erganism Is capable of learning to predict
changes In Its environment.

The evolutionary approach Is based on
computational models of natural selection and
genetics. We call them evolutionary
computation, an umbrella term that combines
genetic algorithms, evolution strategies and
genetic programming.
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Simulation of natural evelution

= On 1 July 1858, Charles Darwin presented his
theory ofi evolution before the Linnean Society of

_ondon. This day marks the beginning of a
revoelution In biology:.

= Darwin’s classical theory of evolution, together
with Welsmann’s theory of natural selection and

Mendel’s concept of genetics, now represent the
neo-Darwinian paradigm.
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s Neo-Darwinism s based on processes; ofi
reproduction, mutation, competition and selection.
TThe power to reproduce appears to e an essential
property of life. The power to mutate Is also
guaranteed in any living organism that reproduces
Itself In a continuously changing environment.

Processes of competition and selection normally
take place in the natural world, where expanding
populations of different species are limited by a

finite space.
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s Evolution canibe seen;as a precess leading to the
maintenance ofi a population’s ability te survive
and reproduce In a specific environment. This
ability 1s called evolutionary fitness.

Evelutionary fitness can also be viewed as a
measure of the organism’s ability to anticipate

changes In Its enviroenment.

The fitness, or the quantitative measure of the
ability to predict environmental changes and
respond adeguately, can be considered as the
quality that Is optimised in natural life.
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IHow/ IS a pepulation with Increasing

fitness generated?

= | et us consider a population of rabbits. Seme
ralbbits are faster thaniothers, and we may say. that
these rabbits possess superior fitness, because they.
have a greater chance ofi avoiding foxes, surviving

and then breeding.

[T two parents have superior fitness, there Is a good
chance that a combination of their genes will
produce an offspring with even higher fitness.
Over time the entire population of rabbits becomes
faster to meet their environmental challenges in the
face of foxes.
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Simulation of natural evolution

a All methods of evelutionary computation simulate
natural evoelution by creating|a population of
Individuals, evaluating their fitness, generating a
new population through genetic operations, and
repeating this process a number of times.

We will start with Genetic Algorithms (GAS) as
most of the other evolutionary algorithms can be
viewed as variations of genetic algorithms.
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Genetic Algerithns

s In the early 1970s; John Holland introduced the
concept of genetic algorithms.

s His aim was teimake computers do what nature
does. Holland was concerned with algorithms
that manipulate strings of binary digits.

m Each artificial “chromosomes™ consists ofi a
number of “genes’, and each gene Is represented
by 0 or 1:

110[1]1/0/1/0/0({0]0]0]1]0[1]0[1
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= Nature has aniability to adapt and leam without
being teldiwhat te de. In other words, nature
finds good chromesomes blindly. GAs doithe
same. Two mechanisms link a GA to the problem
It IS solving: encoding and evaluation.

The GA uses a measure of fitness of individual

chromoesomes to carry out reproduction. As
reproduction takes place, the crossover operator
exchanges parts of two single chromosomes, and
the mutation operator changes the gene value In
some randomly chosen location of the
chromosome.
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Basic genetic algorithms

Step 1: Represent the problem variable demainias
a chromoseme ofi a fixed length, choose the size
ofi a chromosome population N, the crossover
probability p. andithe mutation probability p,...

Step 2: Define a fitness function tormeasure the
performance, or fitness, ofi an individual
chromosome In the problem domain. The fitness
function establishes the basis for selecting
chromosomes that will'be mated during
reproduction.
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Step 3 Randemiy generate an Initial pepulation of
chromosomes of size N:
X1s Xoy o« 0y Xy

Step 4: Calculate the fitness of each individual
chromosome:

(X)), (%), ooy TOXy)

Step 5: Select a pair ofi chromosomes for mating
from the current population. Parent
chromosomes are selected with a probability
related to their fitness.
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Step 6: Create a pair of offispring CAremMoesemes by
applying the genetic operators = Crossover and
mutation.

Step 7: Place the created offispring chroemosemes
In the new: population.

Step 8: Repeat Step 5 until the size of the new
chromosome population becomes egual to the
Size of the Initial population, N.

Step 9: Replace the initial (parent) chromosome
population with the new (offspring) population.

Step 10: Go to Step 4, and repeat the process until
the termination criterion IS satisfied.
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Genetic algorithms

s GA represents an Iterative process. Each iterationIs
called a generation. A typical number off generations
for a simple GA can range firom 50 to over 500. The
entire set ofi generations Is called a run.

Because GAS use a stochastic search method, the

fitness of a population may remain stable for a
number of generations before a superior chromosome
appears.

A common practice Is to terminate a GA after a
specified number of generations and then examine
the best chromosomes In the population. If no
satisfactory solution Is found, the GA Is restarted.
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Genetic algerithms: case study

A simple example willfhelp us terunderstand hew.
a GA works. Let us findthe maximum; valtie of
the function (15x — x%) Where parameter x Varies
petween 0 and 15. For simplicity, we may.
assume that x takes only integer values. Thus,

chromosomes can be built with only four genes:

Integer

11
12
13
14
15
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Suppose that the size ofi the chromosome population
N IS 6, the crassover probability p, equals 0.7, and
the mutation probability p., equals 0.004. The
fitness function In our example Is defined by

fi(x) =15 x — X?
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Thefitness function and chromoeseme: locations

Chromosome
label

Chromosome
string

Decoded
integer

Chromosome
fitness

Fitness
ratio, %

X1
X2
X3
X4
X5
X6

1100
0100
0001
1110
0111
1001

12
4
1

14
;
9

36
44
14
14
56
54

16.5
20.2
6.4
6.4
25.7
24.8

a) Chromosome initial locations.
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m In natural selection, enly the fittest Species can
survive, breed, andithereby pass thelrr genes onito
the next generation. GAS use a similar approach,
but unlike nature, the size of the chromosome
population remains unchanged from one
generation to the next.

The last column in Table shows the ratio of the
Individual chromosome’s fitness to the
population’s total fitness. This ratio determines
the chromosome’s chance of being selected for
mating. The chromosome’s average fitness
Improves from one generation to the next.
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Roulette:wheeli selection

The most commonly Used chromosome: selection
technigues Is the roulette wheel selection.
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Cr0oSsoVver operator:

n In our example, we have an Initial population ofi 6
chromoesomes. Thus, te establish the same
population in the next generation, the roulette

wheel would be spun six times.

s Once a pair ofi parent chromosomes Is selected,
the crossover operator Is applied.
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m FIrst, the crossever operator randomily chooses a
Crossover point where two, parent chromosemes
“preak™, and then exchanges the chromosome
parts after that point. As a result, two new
offispring are created.

m I a pair of chromosoemes does not cress over,

then the chromoesome cloning takes place, and the
offspring are created as exact copies of each
parent.
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Crossover
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Mutation operator

s Mutation represents a change Inthe gene.

s Mutation IS a background operator. lts role Is to
provide a guarantee that the search algorithmiis
not trapped on a local optimum.

= [ he mutation operator flips a randomly selected

gene in a chromoesome.

= [ he mutation probability Is quite small in nature,
and Is kept low for GAs, typically in the range
between 0.001 and 0.01.
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Mutation
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Irhe genetic algorithm cycle

—

X1,
X2,
X3,
X4
X5,
X6;

Generation i

f=36
f=44
f=14
f=14
f= 56
f=54

—

Generation (i + 1)
X1j+1[L]0]0]0] f=56
X2;41[0]2]0]1] f=50
X341 [L] 0 [2]T] f=44
X4i+1 f=44
X5,41[0JL]L]0] f=>54
X6i+1[0[L]1]1] f=56
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Mutation
X6

X2




Genetic algerithms: case study

s Suppose It Is desired to find the maximum of the
“peak” functien ofi two variables:

2_\,2
(6 y) = (1-202e ™ 0D - (- - y3) e X

where parameters x and'y vary between —3 and 3.

m [he first step Is to represent the problem variables
as a chromosome — parameters x and y as a
concatenated binary string:

1]0]0J0J1f0f1]0[O[OJTfTfL]O[1f1
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m \We also choose the size of the chromoeseme
population, for instance 6, and randomly generate
an nitial‘population.

s ['he next step Is to calculate the fitness of each
chromoesome. This Is done In two stages.

m FIrst, a chromosome, that Is a string of 16 bits, IS

partitioned into two 8-bit strings:

1]/0/0[0]1]0|1[0] and [OJO[L]1]1]0[1]1
= [ hen these strings are converted firom binary
(base 2) to decimal (base 10):

(10001010), =1x27 +0x2% +0x2° +0x2% +1x2% +0x 2% +1x 21 +0x 20 = (138),,
and
(00111011), =0x27 +0x2°% +1x2° +1x2% +1x 2% +0x 2% +1x 2! +1x 20 = (59),,
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s Now the range ofi Integers that can be handleadl by
8-bits, that is the range from 0 to (28 — 1), IS
mapped to the actuall range off parameters x and Y,
that Is the range from =3 to: 3:

_5 . 0.0235294

256 -1

= [0 obtain the actual values of x and y, we multiply
their decimal values by 0.0235294 and subtract 3

from the results:
X = (138) x0.0235294 — 3 =0.2470588

and
y =(59)19 X0.0235294 -3 = -1.6117647
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s Using|decodedlvalues;ofi x and y as Inputs 1n the
mathematical function, the GA calculates the
fitness of each chromosome.

To find the maximum of the “peak™ function, we
will use cressover with the probability equal to 0.7
and mutation with the probability egual to 0.001.

As we mentioned earlier, a common practice In
GAs Is to specify the number of generations.
Suppose the desired number of generations Is 100.
That 1s, the GA will create 100 generations of 6
chromosomes before stopping.
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Chromosome: locations on; the surface: ofi the
“pPeak™ function: local maximum
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Chromosome lecations on; the surface of the
“pPeak™ function: global maximum
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Performance graphs for 100 generations ofi 6
chromosenes: local maximum

pc=0.7, pm = 0.001

Average

| | | | | | | |
20 30 40 50 60 80 90
Generations
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Performance graphs for 100 generations ofi 6
chromosomeS' global maximum
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Performance graphs for 20 generations of
60 chiremosones

pc=0.7, pm = 0.001
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Case study: maintenance scheduling

s Maintenance scheduling problems are usually.
solved using a combination ofi search technigues
and heuristics.

m [hese problems are complex and difficult to
solve.

= [ hey are NP-complete and cannot be solved by
combinatorial search techniques.

s Scheduling involves competition for limited
resources, and I1s complicated by a great number
of badly formalised constraints.
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Steps In the: GA development

. Specify the problem, define constraints and
optimum criteria;

. Represent the problem domain as a
Chromosome;

. Define a fitness function to evaluate the
chromosome perfermance;

. Construct the genetic operators;

. Run the GA and tune Its parameters.
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Scheduling ofi 7 units In 4 egual intervals
I'he problemi constraints:

= [he maximumiloads expected during four intervals are
80, 90, 65 and 70'MW;

Maintenance off any unit starts at the beginning of an

Interval and finishes at the end of the same or adjacent
Interval. The maintenance cannot be aborted or finished
earlier than scheduled:;

The net reserve of the power system must be greater or
egual to zero at any Interval.

The optimum criterion Is the maximum of the net
reserve at any maintenance period.
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Unit data and maintenance reguirements

Unit Unit capacity, | Number of intervals required
number MW for unit maintenance

1 20 2
15
35
40
15
15
10

[1 Negnevitsky, Pearson Education, 2002



Unit gene pools

Chromosome for the scheduling problem

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7
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The cressover operator;

Parent 1

0110fjo011jo001f1000J0100f00710J1000

Parent 2

1 100fjo110fo100fo001j0010f1000]J0100

Child 1

0110]j0011J0001f1000J0010]J1000J0100]

Child 2

1 100fjo110f0100fo0071j0100f00710J1000
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Ihe mutation operator

%
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Perfermance graphs and tihe best maintenance
schedules created inia population of 20/ ChAKreNIESOMES

N =20, pc=0.7, pm = 0.001
T V l'v i I V I T
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(a) 50 generations
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Perfermance graphs and tihe best maintenance
schedules created inia population of 20/ ChAKreNIESOMES

N =20, pc=0.7, pm = 0.001
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(b) 100 generations

[1 Negnevitsky, Pearson Education, 2002



Perfermance graphs and tihe best maintenance
schedules created in a poepulation of 100 ChKFeNESOMES

N = 100, pc = 07, Pm = 0.001

30 40 50 60 70 80 90 100
Generations

Net reserves:

Time interval

(a) Mutation rate is 0.001
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Performance graphs and the best maintenance
schedules created in a poepulation of 100 ChKFeNESOMES

30 40 50 60 70
Generations

Net reserves:
25 30

Unit 6 -
bl

Time interval

(b) Mutation rate 1s 0.01
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