|_ecture 10

Evolutionary Computation:
Evolution strategies and genetic programming

s EVvoelution strategies
= Genetic programming
® Summary

[1 Negnevitsky, Pearson Education, 2002

Evoelution Strategies

Another approach te simulating natural
evolution was propesed: in Germany. in the early
1960s. Unlike genetic algorithms, this approach
— called an evolution strategy — was designed
to solve technical optimisation problems.

[1 Negnevitsky, Pearson Education, 2002

s In 1963 two students, ofi the Technical
University of Berlin, Ingo Rechenberg and
Hans-Paul Schwefel, were working on the
search for the optimal shapes of bodies in a
flow. They decided to try random changes in
the parameters defining the shape following the

example of natural mutation. As a result, the
evolution strategy was born.

Evolution strategies were developed as an
alternative to the engineer’s intuition.

Unlike GAs, evolution strategies use only a
mutation operator.

[1 Negnevitsky, Pearson Education, 2002

Basic evelution strategies

Iniits simplest form, termed as a (1+1)-evelution
strategy, one parent generates one offspring per
generation by applying normally distributed

mutation. The (1+1)-evoelution strategy can be
Implemented as follows:

Step 1: Choose the number of parameters N to

represent the problem, and then determine a feasible
range for each parameter:

{lein’ leax}) {X2min’ X2ma><} {XNmin’ XNmax}

Define a standard deviation for each parameter and
the function to be optimised.

[1 Negnevitsky, Pearson Education, 2002

Step 2: Randomly: select an iitialivalue for each
parameter from the respective feasible range. The
set of these parameters will constitute the nitial
population of parent parameters:

X1y Koy« oy Xy

Step 3: Calculate the solution assoclated with the
parent parameters:
X=1X, X5 -0 0y Xy)

[1 Negnevitsky, Pearson Education, 2002

Step 4+ Create a new (offspring) parameter by,
adding a normally distributed random variable a
With meani zero and pre-selected deviation; 0.t each
parent parameter:

AN I i=1,2,... N
Normally distributed mutations with mean zero

reflect the natural process of evolution (smaller
changes occur more freguently than larger ones).

Step 5: Calculate the solution assoclated with the
offspring parameters:

[1 Negnevitsky, Pearson Education, 2002

Step 6: Compare the selution associated with the

offs
the
offis
the

POP

Oring parameters with the one associated with
narent parameters. If the solution for the

pring Is better than that for the parents, replace
parent population, with the offspring

ulation. Otherwise, keep the parent

parameters.

Step 7: Go to Step 4, and repeat the process until a

satisfactory solution Is reached, or a specified
number of generations Is considered.

[1 Negnevitsky, Pearson Education, 2002

m An evelution strategy: reflects the nature of a
chromosome.

s A single gene may simultaneously affect several
characteristics of the living organism.

s On the other hand, a single characteristic of an

Individual may be determined by the simultaneous
Interactions of several genes.

= [he natural selection acts on a collection of genes,
not on a single gene In isolation.

[1 Negnevitsky, Pearson Education, 2002

Genetic programming

s One of the central preblems in computer science Is
how to: make computers solve problems without
Peing explicitly programmed to do so.

m Genetic programming offers a selution through the
evolution of computer programs by methods of

natural selection.

= In fact, genetic programming Is an extension of the
conventional genetic algorithm, but the goal of
genetic programming IS not just to evolve a bit-
string representation of some problem but the
computer code that solves the problem.

[1 Negnevitsky, Pearson Education, 2002

m Genetic programming; Is a recent development 1n
the area ofi evolutionary' computation. It was
greatly stimulated n the 1990s by John Koza.

s According to Koza, genetic programming searches
the space ofi possible computer programs for a
program that 1s highly: fit for solving the problem at

hand.

= Any computer program Is a seguence of operations
(functions) applied to values (arguments), but
different programming languages may include
different types of statements and operations, and
have different syntactic restrictions.

[1 Negnevitsky, Pearson Education, 2002

= SInNce genetic programming manipulates programs
by applying|genetic operators, a programming
language shoeuld permit a computer program te; e
manipulated as data and the newly created data to
e executed as a program. For these reasons,
ISP was chosen as the main language for

genetic programming.

[1 Negnevitsky, Pearson Education, 2002

L ISP structure

ISP has a highly symboel-oriented structure. Its
basic data structures are atoms and lists. An atom
IS the smallest indivisible element of the LISP
syntax. The number 21, the symbol X and the string
“This Is a string™ are examples of LISP atoms. A

list Is an object composed of atoms and/or other
lists. LISP lists are written as an ordered collection
of Iitems Inside a pair of parentheses.

[1 Negnevitsky, Pearson Education, 2002

L ISP structure

For example, the list
(=(AB)C

calls for the application of the subtraction function

(=) to two arguments, namely the list (*A B) and
the atom C. First, LISP applies the multiplication

function (*) to the atoms A and B.

Once the list (*A B) Is evaluated, LISP applies the
subtraction function (-) to the two arguments, and
thus evaluates the entire list

(- (-AB)C).

[1 Negnevitsky, Pearson Education, 2002

Graphical representation ofi L ISP S=ex{pressions

a Both atoms and'lists are called symbolic
expressions or S-expressions. In LISP, allidata
and all' programs are S-expressions. This gives
L_ISP the ability to operate on programs as If they.
were data. In other words, LISP programs can
modify themselves or even write other LISP
programs. This remarkable property of LISP
makes It very attractive for genetic programming.

s Any LISP S-expression can be depicted as a rooted
point-labelled tree with ordered branches.

[1 Negnevitsky, Pearson Education, 2002

ISP S-expression (— (*A B) C)

[1 Negnevitsky, Pearson Education, 2002

IHow!@do wWe apply. genetic programming
10 a proplem?

Before applying genetic programming to a problem,
we must accomplish five preparatory steps:

Determine the set of terminals.
Select the set of primitive functions.
Define the fitness function.

Decide on the parameters for controlling the run.
Choose the method for designating a result of
the run.

[1 Negnevitsky, Pearson Education, 2002

= [he Pythagorean Theorem helps us to iliustrate
these preparatory: steps and demonstrate: the
potential of genetic programming. The theorem
says that the hypotenuse, ¢, of a right triangle with
short sides a and b Is given by

c=+va® +b?

= [he aim of genetic programming IS to discover a
program that matches this function.

[1 Negnevitsky, Pearson Education, 2002

= [0 measure the performance of the as-yet-
undiscovered computer program, we will use a
number ofi different fitness cases. The fitness
cases for the Pythagorean lTheorem are
represented by the samples of right triangles In
Table. These fitness cases are chosen at random

over a range ofi values of variables a and b.

5.830952 10 15.620499
16.124515 21.840330
18.110770 8.062258
33.837849 28.844410

5.000000 9.219545

Hypotenuse ¢
3
8

[1 Negnevitsky, Pearson Education, 2002

Step 1: Determine the set of terminals.
The terminals correspond to the inputs ofi the
computer program to be discovered. Our
program takes two Inputs, a and b.

Step 2: Select the set of primitive functions.
The functions can be presented by standard

arithmetic operations, standard programming
operations, standard mathematical functions,
logical functions or demain-specific functions.
Our program will use four standard arithmetic
operations +, —, * and /, and one mathematical
function sgrt.

[1 Negnevitsky, Pearson Education, 2002

Step 3: Define the fitness function. A fitness
function evaluates how: well a particular computer
program canisolve the problem. For our problem,
the fitness of the computer program cani be
measured by the error between the actual result
produced by the program and the correct result

given by the fitness case. Typically, the error IS
not measured over just one fitness case, but
Instead calculated as a sum of the absolute errors
over a number of fitness cases. The closer this
sum Is to zero, the better the computer program.

[1 Negnevitsky, Pearson Education, 2002

Step 47 [Decide onitine parameters fior controlling
the run. Eor contrelling a run, genetic
programming| uses the same primary. parameters
as those used for GASs. They include the
population size and the maximum numper of
generations to be run.

Step 5: Choose the method for designating a
result of the run. It Is common practice In
genetic programming to designate the best-so-far
generated program as the result of a run.

[1 Negnevitsky, Pearson Education, 2002

Once these five steps are complete, a run cani be
made. The run off genetic programming starts with
a random generation of ani initial population: of
computer programs. Each program Is composed! of
functions +, —, ., / andi sgrt, and terminals a and b.

In the initial population, all computer programs
usually have poor fitness, but seome individuals are
more fit than others. Just as a fitter chromosome IS
more likely to be selected for reproduction, so a
fitter computer program Is more likely to survive by
copying Itself into the next generation.

[1 Negnevitsky, Pearson Education, 2002

CresSoVEr: In genetic programming:
Two parental S-expressions

%

a g a b b

(/ (- (sart(+ (xaa) (-ab))) a) (xab)) (+ (= (sqrt (- (* b b) @) b) (sart (/ a b))

[1 Negnevitsky, Pearson Education, 2002

CreSSOVEr: In genetic programming:
Two offSpring S-expressions

%

{ % ¢

(/ (- (sart (+ (xaa) (—ab))) a) (sart (- (x b b) a))) (+ (=(~ab) b) (sart (/ a b))

[1 Negnevitsky, Pearson Education, 2002

Mutation Ingenetic progranmming

A mutation operator can randomly:change any:
function or any terminal In the LISP S-expression.
Under mutation, a function can only be replaced by
a function and a terminal can only be replaced by a
terminal.

[1 Negnevitsky, Pearson Education, 2002

Muitation iR genetic programming:
Originall S-expressions

%

{ vd b d b

(/ (- (sqrt (+ (aa) (-ab)) a) (xab)) (+ (= (sart (= (b b) &) b) (sart (/ a b)))

[1 Negnevitsky, Pearson Education, 2002

Muitation iR genetic programming:
Mutated! S-expressions

%

{ % d % { %

(/ (+ (sart (+ (xaa) (—ab))) a) (xab)) (+ (= (sqrt (= (xb b) &) a) (sart (/ a b))

[1 Negnevitsky, Pearson Education, 2002

In summary, genetic programming creates computer
programs by.executing the following steps:

Step 1: Assign the maximum nuMmber ofi generations
o be run and probabilities for cloning, crossover
and mutation. Note that the sum of the probability:
ofi cloning, the probability of crossover and the
probability off mutation must be egual to one.

Step 2: Generate an Initial population of computer
programs of size N by combining randomly
selected functions and terminals.

[1 Negnevitsky, Pearson Education, 2002

Step 3: Execute each computer program Inithe
population and calculate: its fitness with an
appropriate fitness function. Designate the best-
so-far individualias the result of the run.

Step 4: With the assigned probabilities, select a

genetic operator to perform cloning, CroSSoVer or
mutation.

[1 Negnevitsky, Pearson Education, 2002

Step 5: If the cloning operator Is chosen, select ene
computer program fromithe current population of
programs and copy: It intera new population.

[T the crossover operator IS choesen, select a pair
ofi computer programs from the current

population, create a pair of offspring programs
and place them Into the new population.

I the mutation operator IS chosen, select one
computer program from the current population,
perform mutation and place the mutant into the
new population.

[1 Negnevitsky, Pearson Education, 2002

Step 6: Repeat Step 4" until the'size of the new
population of computer programs becomes equal
to the size of the mitial pepulation, N.

Step 7: Replace the current (parent) population
with the new (offspring) population.

Step 8: Go to Step 3 and repeat the process until
the termination criterion Is satisfied.

[1 Negnevitsky, Pearson Education, 2002

Fitness history of the best S-expression

o
S
7
(7p]
(b}
<
—
LL

S o d %

Generations Best of generation

[1 Negnevitsky, Pearson Education, 2002

What are the main advantages off genetic
programming compared to genetic algorithnms?

a Genetic programming applies the same
evolutionary approach. However, genetic
programming Is no longer breeding bit strings that
represent coded solutions but complete computer

programs that solve a particular problem.

The fundamental difficulty of GAs lies In the
problem representation, that Is, in the fixed-length
coding. A poor representation limits the power of
a GA, and even worse, may lead to a false
solution.

[1 Negnevitsky, Pearson Education, 2002

m A fixed-length coding Is rather artificial. AS It
cannot previde a dynamic variability inflengtn,
such a coding often causes considerable
redundancy and reduces the efficiency of genetic
search. In contrast, genetic programming USes
high-level building blocks ofi variable length.

Thelir size and complexity can change during
breeding.

Genetic programming works well in a large
number of different cases and has many potential
applications.

[1 Negnevitsky, Pearson Education, 2002

