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Abstract

Although Independent Component Analysis (ICA) is e�ective for blind source separation of a set of
unknown sources of signals, its convergent analysis time is rather lengthy due to the classical weight
adjusting procedure. In this paper, we propose a technique to speed up this analysis time by introducing
two learning parameters, a learning rate, �, and a momentum term, �. The values of these two parameters
are dynamically adjusted. The success of this blind source separation is measured in terms of mutual
information with the probability density functional approximation under Gram-Charlier Expansion. Our
technique is tested on some benchmark examples. The separation outcomes are the same as the others's
but our analysis time is signi�cantly reduced.

1 Introduction

The application of Independent Component
Analysis (ICA) or Blind Source Separation
(BSS) covers several essential areas such as
speech recognition, data communication, sensor
signal processing, and medical science [1]. The
problem of ICA or BSS concerns the techniques
for separating a mixed source signals with pri-
ori unknown information related to their orig-
inal occurences. The only known information
provided are the number of signal sources and
the statistical assumptions on their expected sig-
nal values at any time. Various separating al-
gorithms based on the statistical cost functions
such as Kullback-Leiber divergence and maxi-
mum likelihood estimator [1, 2, 4, 6, 7] are in-
troduced. The performance on separability of
these algorithms depends upon the selected ac-
tivation function and, also, the appropriate cost
function. The minimization of a cost function
can be e�ectively acheived by using a super-
vised neural network. However, the convergent
time, in some cases, cannot be tolerated. Yu
[8] and Dai [3] used the generalized delta rule
with a learning rate � and a momentum � to
speed up the convergence. The approproate val-
ues of � and � depend on the applications, ex-
periments, and researcher's experience. A large
� can accelerate the learning procedure but can
cause a local minima solution or a divergence.
The momentum rate parameter is designed to
smooth the error oscillation and reduce the num-
ber of iterations for convergence. The values of
the learning rate and the momentum are �xed
throughtout the learning period. Amari [1] and

Pun [7] improved the convergent speed by vary-
ing the learning rate � from 0:1 to 0:9 during
the learning period. The value of the learning
rate at the current iteration step is computed
by dividing the learning rate from the previous
iteration step.
In this paper, we improve the convergent

speed of Amari's by appropriately selecting the
divisor of each learning rate and momentum. We
organize our paper into term of problem of BSS,
How to test an Independence of Signal, BSS
Learning algorithms, our purposed algorithm,
Simulation, and conclusion.

2 Blind Source Separation

Problem

Let us consider a set of m unknown random
source signals, s(t), which are mutually indepen-
dent at a time t. They are de�ned by

s(t) = [s1; s2; :::; sm]
T (1)

These independent signals has zero mean,
E(s(t)) = 0, and unit variance, �2. The signal
s(t) is applied to a linear system by non-singular
m-by-m matrix A, called mixing matrix. The
result is an m � by � 1 observation signal x(t)
related to s(t) as follows

x(t) = As(t) + n(t) (2)

where

x(t) = [x1(t); � � � ; xm(t)]
T

n(t) is the additive noise



The source signal s(t) and mixing matrix A are
unknown. The only prior information is the
number of source signals and the number of the
observation vector x(t). The elements of vec-
tor x(t)'s are now dependent sources because of
the mixing matrix A. The problem is how to
�nd a de-mixing matrix W, which is sometime
called an inversion matrix of A, for estimating
the source signals s(t). Let y(t) be the estimated
signals of s(t). The value of y(t) can be written
as follows

y(t) = Wx(t)

or (3)

y(t) = WAs(t) = A�1As(t) = Is(t) = s(t)

where y(t) = [y1(t); � � � ; ym(t)]
T , A�1 is the in-

verse matrix of A, and I is an identity matrix.
The procedure for estimating signal set s(t) is
illustrated in Figure 1.
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Figure 1: ICA Structure.

3 Independence of Signals

To obtain the completely separated any two sig-
nals yi and yj , the values of yi and yj must be
statistically independent at all times. There are
various statistical independence tests that can
be used in this context. Two random variables yi
and yj are said to be statistically independent if
the value of yi does not e�ect on the value of yj ,
and vice versa [5]. The independence of sources
can be considered in terms of probability density
function. We denote by p(yi; yj) the joint prob-
ability density function of yi and yj , and pi(yi)
the marginal probability density function of yi
as follows:

pi(yi) =

Z 1
0

p(yi; yj)dyj

and (4)

p(yi; yj) = pi(yi)pj(yj)

Practically, it is not easy to test whether two sig-
nals yi and yj are independent by using p(yi; yj),
pi(yi), and pj(yj). The easier testing is by con-
sidering their correlation. Two random variables
yi and yj are said to be uncorrelated if their co-
variance is zero. The covariance can be com-
puted in terms of the correlated expected values
and the multiplication of the expected values of
yi and yj as follows

E[yiyj ]�E[yi]E[yj ] = 0 (5)

If the variables are independent, they are also
uncorrelated. On the other hand, uncorrelated-
ness does not imply independence.

4 Learning Algorithm

The original frame work of ICA is to minimize
the dependency among the estimated signals yi,
i = 1; : : : ; n. The dependency is measured by the
Kullback-Leibler divergence between the joint
probability density function of y(t) p(y) and
the factorial of marginal distribution of outputsQ

pi(yi) :

D(W) =

Z
p(y) log

p(y)Q
piyi

dy (6)

where pi(yi) is the marginal probability density
function of output y(t). Amari [1] showed that
Kullback-Liebler divergenceD(W) can be calcu-
lated from the average Mutual Information (MI)
of yi as follows:

D(W) = �h(y) +
nX
i=1

h(yi) (7)

where

h(y) = �
R
p(y) log p(y)dy

h(yi) = �
R
p(y) log piyidyi

Again, our target is to minimize the Kullback-
Leibler divergence between the output yi by es-
timating the de-mixing matrix W. The prob-
lem is how to estimate the matrix W without
an information about the mizing matrix. An
MI is calculated from the di�erential entropy of
y(t) and their marginal entropy. We assume the
output signals have maximal di�erential entropy,
hence they are Gaussian or Normal distribution.
The marginal entropy h(yi) is computed by ap-
plying the Gram-Charlier Expansion to approx-
imate the probability density function pi(yi) as



follows

pi(yi) � �(yi)f1 +
ki3
3!
H3(yi) +

ki4
4!
H4(yi)g (8)

where E[y(t)] = E[Wx(t)] = E[WAs(t)] = 0,
E[yi] = 0, mi

2 = 1, ki3 = mi
3, k

i
4 = mi

4 � 3,
mi

k = E[(yi)
k] is the kth order moment of yi,

�(yi) = 1p
2�
e�

y2
i
2 and Hk(yi) are Chebyshev-

Hermite Polynomials de�ned by the identity

(�1)k
dk�(yi)

dyki
= Hk(yi)�(yi) (9)

Amari [1] and Haykin [4] have been proven that

h(yi) �
1

2
log 2�e

�
(ki3)

2

2 � 3!
�

(ki4)
2

2 � 4!

+
5

8
(ki3)

2ki4 +
1

16
(ki4)

3 (10)

It can be calculated by

�

Z
�(yi) log�(yi)dyi =

1

2
log 2�e (11)

From y(t) = Wx(t), we get H(y(t)) =
H(x(t)) + log[det(W)]. Applying (10) and (11)
to (7), we get

D(W) � �H(x)� log[det(W)]

+
n

2
log 2�e

�

nX
i=1

[�
(ki3)

2

2 � 3!
�

(ki4)
2

2 � 4!

+
5

8
(ki3)

2ki4 +
1

16
(ki4)

3] (12)

To �nd W to minimize D(W), we di�erenti-
ate D(W) with respect to W as follows

@D(W)

@(W)
= �(t)(I � f(y)yT )W�T (13)

W at time k + 1 is adjusted by the following
cconstructive step

Wk+1 =Wk + �k(I � f(yk)y
T
k )Wk (14)

where the activation function f(y) can be de-
�ned as:

f(y) =
3

4
y11 +

25

4
y9 �

14

3
y7

�
47

4
y5 +

29

4
y3 (15)

5 Purposed Algorithm

In this paper, we revise an important experi-
mental result of Haykin [4] and Amari [1]. Our
improvement is based on these few observations
of Amari's and Haykin's results. Firstly, only a
small �xed step of learning rate value can make
the separation of signals y converged but a larger
learning rate values in the range of 0:5;� � � 0:9
cause output signals y diverged. Secondly, the
convergence speed can be increased by gradu-
ally reducing the learning rate until it is equal
to zero. The learning rate may be initially set
to any value. Thirdly, the reduction of learning
rate in the current iteration step is done by di-
viding the learning rate from the previous itera-
tion step, namely �t+1 = �t=1:005. However, we
�nd that this simple approach works well when
0:1 � � � 0:5, but when 0:6 � � � 0:9 the con-
vergence speed is reduced and more iterations
are required. Figures 4 and 5 shows di�erent
convergence speeds.
Instead of using a �xed divisor throughtout

the learning period, we use di�erent divisors for
di�erent learning rate. The learning rate should
be divided proportionally to its value. If the
learning rate is large then it should be divided
by a large divisor. In addition, at each itera-
tion k, a momentum term ÆM and a momentum
rate � are added to adjust the weight W. Let
Wk be the weight W at iteration k and ÆMk

the momentum term at iteration k. The mo-
mentum term ÆM is adjusted by using this rule
ÆM = �ÆW and ÆW = �W. The stopping con-
dition is de�ned in terms of the di�erence be-
tween D(Wt) at time t and D(Wt�1) at time
t� 1.

Purposed ICA Algorithm

Input : Observed signal, x
Output : Output signal y and a de-mixing weight
matrix W
begin

get an observed signal x
i=0;
while i � NumberOfIterations
Randomly initialize weight matrix W
appropriate divisor = 1:0 + 10�2�
Compute y =Wx

Compute Kullback-Liebler Divergence D(W0)
ÆM0 = 0

Set t = 0
repeat

t = t+ 1
Compute ÆWt�1 = �(I� f(y)yT )Wt�1
Compute Wt =Wt�1 + ÆWt�1 + ÆMt�1
Compute ÆMt = �ÆWt�1



� = �

appropriate divisor

Compute Kullback-Liebler Divergence D(Wt)
until D(W(t))�D(W(t� 1)) > �KL
i = i+ 1

End While

end.

6 Simulation

In this paper, we simulate our algorithm on
the computer using three-synthesis signal, a
random mixing matrix A, and a initial random
de-mixing matrix W. Each signal contains
2500 data points. The convergent test is set as
�KL � 0:000001. We simulated �ve iterations
for each step with the learning rate values of
0:1 � � � 0:9 and step size of 0:1. The system
is simulated by using Matlab Application.

1:S1(t) = 0:1 sin(400t) cos(30t)
2:S2(t) = 0:01sign[sin(500t+ 9 cos(40t))]
3:S3(t) = uniform noise in range [-1,1]

7 Experimental Results

Computer simulations for ICA problem with
appropriate learning rate and momentum rate
are presented in this section. Six types of ex-
amples are provided to measure an algorithm's
eÆciency.

1. Fixed learning rate value: 0:1 � � � 0:9

2. Approach Learning rate to 0 by

�t = �t�1=1:005

3. Approach Learning rate to 0 by

�t =
�t�1

appropriate divisor

4. Approach Learning rate to 0 by

�t =
�t�1

appropriate divisor

and 0:01 momentum rate.

5. Approach Learning rate to 0 by

�t =
�t�1

appropriate divisor

and 0:10 momentum rate.

6. Approach Learning rate to 0 by

�t =
�t�1

appropriate divisor

and 0:20 momentum rate.
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Figure 2: Successful separation of ICA Exam-
ples.

In Figure 2, three original signals Si(t) were
generated and passed to mixing non-singular
matrixA, whose information were unknown. An
observation signal xi(t) ,which are mixed, de-
pendent, and unknown information signal, are
the input of ICA system. Figure 2 shows a suc-
cessful separation yi(t) and Figure 3 displays a
correlated output or unsuccessful separation by
using ICA with a �xed learning rate of 0.9.
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Figure 3: Unsuccessful separation of ICA Algo-
rithm

Figure 4 shows the total number of epoches in
Y-axis and the learning rate step in X-axis for
six types of experiments. The comparison of all
results is illustrated in Figure 5.

8 Conclusion

This paper introduce a new optimization tech-
nique for independent component analysis prob-
lem. The main problem of ICA or BSS, is work-
ing with unknown information of source and
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Figure 4: ICA Results: number of epoch for each
experiment
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Figure 5: Comparison Experimental Results.
Five types of lines are used to denote the results.
The dashed-and-dotted line is for �xed �. The
ticked line is for � = �=1:005. The dotted line is
for � = �=1:0+�10�2; � = 0:01. The thick line is
for � = �=1:0+ �10�2; � = 0:10. The thick-and-
dotted line is for � = �=1:0 + �10�2; � = 0:20.

mixing matrix A. We try to solve an inver-
sion matrix of A, called de-mixing matrix W

here. The approximation of probability den-
sity function is selected as a maximization en-
tropy, Gram-Charlier Expansion. The conver-
gence test is measured by Kullback-Liebler di-
vergence. This algorithm can be easily im-
plemented on an unsupervised neural network
model. Our approach provides a 
exible and ef-
�ciency in selection of the learning rate and mo-
mentum factor. The momentum rate and the de-
creasing of learning rate by their proportion are
newly signi�cant parameter in the minimization
of number of iterations for the convergence.
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