Chapter Three: Decisions

Slides by Evan Gallagher

Chapter Goals

e 1¥1f statement 13l

« halleudiou INtegers, floating-point numbers,
uaz StriNQgs ed1ls

* hladeyawiia Boolean

The 1if Statement

A9 AFTULR

(ForignTuluTysunsulug))

The if Statement

We aren’t lost!

We just haven’t decided which way to go ... yet.

The 1if Statement

The if statement

allows a program to carry out different actions
depending on the nature of the data being processed

=~

1 9)) o 1 9 o I~ 51' a Y 1
%2819 1 51n3uMn1Inszaig) Tndusa Tasansssumnavesvoyan

Ma90g IUNTLUIUNS

The 1if Statement

The if statement is used to implement a decision.

— When a condition is fulfilled,
one set of statements Is executed.

— Otherwise,
another set of statements is executed.

U4 if statement lun159M15719: 1 TUsunsNAREUR
— dloNeulvniiudluasa
waves Statements sanilazgn executed.
— 1 lidluasy,
onmues Statements qwgn executed.

The if Statement

if it’'s quicker tc

we’ll go that
else
we go that way

The if Statement

The thirteentl floor!

The if Statement

The thirteentl floor!
It’s missing!

The if Statement

The thirteentl floor!
It’s missing!

OH NO !

The if Statement

We must write the code
to control the elevator.

How can we skip the
13t floor?

15129 UTARLND
AUANANA

weied Lo Lt 13 “lvina?

The 1if Statement

We will model a person choosing
a floor by getting input from the user:

1519zdNaavNISIRaNTULaIUAAAUIY 1AEN159L
SR GORRIARL]

int floor;
Scanner sc= new Scanner (System.in);
System.out.print("Floor: ") ;

floor = sc.nextInt();

The 1if Statement

mﬁﬂ%ﬂ@wummv 13 i 20,
Zﬂ?éLﬂ?Nﬁ?@x‘iﬁNﬂ?%%@ﬁ\ﬂ (actual floor) lsfivinrivs 19.

mLﬂunmJ@u,
lsunsulddaasntlamdun laiag

1519tdudavandn input avunilvainialaau lanils:

int actual floor;
if (floor > 13) {
actual floor = floor - 1;
}
else {
actual floor = floor;

The 1if Statement

Syn1ax 3.1 1f Statement A condition that is true or false.

Often uses relational operators:

/ mm = < <m > >=
| |

Braces are not required 1f (floor > 13) Don't put a semicolon here!
if the branch contains a {
single statewent, but it's actual_floor = floor - 1;
good fo always use them. \}

else If the condition is true, the statement(s)
f in this branch are executed in sequence;

if the condition is false, they are skipped.

actual_floor = floor;

Owit the eTse branch } o

if there is nothing o do. If the condition is false, the statement(s)
in this branch are executed in sequence ;
if the condition is true, they are skipped.

Lining up braces
is a good idea.

The if£f Statement — The Flowchart

Condition
True False
floor > 13°?
actual _floor = actual _floor =

floor - 1 floor

The 1if Statement

Sometimes, it happens that there is nothing
to do in the else branch of the statement.

So don’t write it.

U1NAsY 1570 LiaanTildsunsuvinaz1slu block way
else

AVLLULA Lae 2T ol

The 1if Statement

AN DUUTARD ALY
1779 decrement Asawua floor > 13.

151 set actual floor lalagnauay test au la:

int actual_floor = floor;
i1f (floor > 13) {
actual_floor—— ;

} 7/ ligadld else mssinta

The if£f Statement — The Flowchart

No else branch

True False
flear > 132

actual_floor--

The if Statement — A Complete Elevator Program

public static void main(String [] args) {

int floor;
Scanner sc _obj = new Scanner (System.in);
System.out.println("Floor: ") ;
floor = sc_obj.nextInt();
int actual floor;
if (floor > 13) {
actual floor = floor - 1;
} else {
actual floor = floor;

}

System.out.println("The elevator will travel to the actual
floor " + actual floor);

The 1 £ Statement — Brace Layout

- n1svinlaaliaruwdnaunisufisne
e N19RHANUTILLGI LANN

if (£loor > 13)
{

floor--;

The 1 £ Statement — Brace Layout

« As long as the ending brace clearly shows what it
IS closing, there is no confusion.

if (floor > 13) {

floor--;

Some programmers prefer this style
—It saves a physical line in the code.

The 1 £ Statement — Always Use Braces

When the body of an if statement consists of
a single statement, you need not use braces:

Tunsain if statement Ju@ statement a2 lu
block 151 liisavlailnnA

if (floor > 13)
floor—--;

The 1 £ Statement — Always Use Braces

However, it iIs a good idea to always include the braces:
— the braces makes your code easier to read, and
— you are less likely to make errors such as ...

witsAfdnn1 e iwszazaulaAn ledng
N1 war Hlan1an error Aziintlaanin

The if Statement — Common Error — The Do-nothing Statement

Can you see the error?

if (floor > 13) @ ERROR
{

floor--;

The if Statement — Common Error — The Do-nothing Statement

if (floor > 13) ; // ERROR ?
{

floor--;

wuuil lai’le compiler error.

compiler 9z laiuIvLRDULLAE
Jullay i f statement i AINIUATN:

a1 floon> 13, execute statement 7 liives 15108 |
(semikolon sg1udenily statement 18 uaidlu statement 7i'lies'ls)

vaaniu Tisunsy execute T8aludlnn Taeliauladou'ly (floor > 13) 3n
1iude statement uilnnhildifluduilwes if Statement &n

The if Statement — Common Error — The Do-nothing Statement

Can you see the error?
This one should be easy now!

if (floor > 13)
{

actual_floor = floor - 1;
}

else@ ERROR
{

actual floor = floor;

}

And it really is an error this time.

The if Statement — giautn 13avin Nesting (if 4@ if)

Block-structured code has the property that nested
statements are indented by one or more levels.

public static void main(String [] args)

[

int floor;

1f (floor > 13)
[

floor--;

}

return 0O;

}
0O 1 2

Indentation level

The if Statement — giaut1 13a%i Nesting

1l tab key lunistianin
e ...
Tilawnn editor azlim1NnNd9 tab winAu

Luckily most development environments have
settings to automatically convert all tabs to spaces.

Toan 1dsunsu editor #uluaiinisanean’lviudas
tab 1l space la

The Conditional Operator

The Conditional Operator

I Y] o 1 4 .
Y9N 151neenldinyr Java suedeila:

actual floor = if (floor > 13) {
floor - 1;
}
else {
floor;

Statements lild return aez'ls dniusldfiveenuiiu output ild
uasiumilunnuAana

The Conditional Operator

C & conditional operator lugiuuu

condition ? wvaluel : wvalue2

expression 1aduaz return a1 valuel sidewiluaie wie return
value2 $idouluilumia

The Conditional Operator

For example, we can compute the actual floor number as

actual floor = (floor > 13) ? floor - 1 : floor;

which is equivalent to

if (floor > 13)
{

actual_floor = floor - 1;

}

else

{

actual_floor = floor;

The Conditional Operator

You can use the conditional operator anywhere that a
value is expected, for example:

System.out.println("Actual f1: " +
(floor > 13) ? floor - 1 : floor) ;

We don’t use the conditional operator in this book, but it is a
convenient construct that you will find in many programs.

1T Y
- 4

The if Statement — aAUSTNANT

if (floor > 13)
{

actual_floor = floor - 1;

System.out.println("Actual floor:" + actual floor);

}

else

{

actual_floor = floor;

System.out.println("Actual floor: " + actual floor);

Do you find anything curious in this code?

1T Y
- 4

The if Statement — aAUSTNANT

if (floor > 13)
{

actual floor = floor - 1;
System.out.println("Actual floor: " + actual floor);

" + actual floor);

Hmmm...

The 1 £ Statement — Removing Duplication

if (floor > 13)
{

actual floor = floor - 1;
System.out.println("Actual floor: " + actual floor);

" + actual floor);

Do these depend
on the test?

The 1 £ Statement — Removing Duplication

if (floor > 13)
{

actual floor = floor - 1;
}
else
{
actual] floor = floor;
I
System.out.println("Actual floor: " + actual floor);

You should remove
this duplication.

Relational Operators

Which way is quicker to the candy mountain?

Relational Operators

Let's compare the distances.

Relational Operators

Relational operators

< >=
> <=

are used to compare numbers and char.

anldinallaauiiaunilauuas char

Relational Operators

Table T Relational Operators

C++ Math Notation Description

> > Greater than

Greater than or equal

\%
I
v

< < Less than
<= < Less than or equal
== = Equal

] = Not equal

Relational Operators

Syntax 3.2 Comparisons

These quantities are compared.

N

floor > 13

Check that you have T~ Oneof: == 1= < <= > >=

the right direction:

> lgreater) or < (less) Check the houndary condition:
Po you want to include (>=) or exelude (>)7
floor == 13
N Checks for equality.
Use ==, not =

double x; double y; const double EPSILON = 1E-14;
if (fabs(x - y) < EPSILON)

R

Checks that these floating-point numbers are very close.

Relational Operators

Table 2 Relational Operator Examples

Expression
3 <= 4
CSD 3 =<4
3> 4
4 < 4
4 <= 4
SE=—N5N =D
3 1=5—1

© 3-6/2

1.0 / 3.0 == 0.333333333

CSD 10" > 5

Value

true

Error

false

false

true
true
true
Error

false

Error

Comment
3 is less than 4; <= tests for “less than or equal”.

The “less than or equal” operator is <=, not =<, with
the “less than” symbol first.

> 1s the opposite of <=.

The left-hand side must be strictly smaller than the
right-hand side.

Both sides are equal; <= tests for “less than or equal”.
== tests for equality.

I= tests for inequality. It is true that 3 is not 5 — 1.
Use == to test for equality.

Although the values are very close to one another,
they are not exactly equal. |

You cannot compare strings and numbers.

Relational Operators — Some Notes

Computer keyboards "Lifi keys sia'l1ii:

>

<
el uuuiitnu e

>=

Relational Operators — Some Notes

1511 duauny == Operator luaouusn 9

= 9 n 9 1 = 1 o 1 9 o
T Java, = Ianuvueual 1 laulanuseuiey, ulanmsmruanldias
5 deile

The == operator vuesdsmslseumeuIumnuile:

floor = 13; // Assign 13 to floor

// nageun £loor wminu 13 4
if (floor == 13)

You can compare char as well:

if (input == ‘Q’)

Common Error — Confusing =and ==

mu1 Java Lisenlild = luQeulvvoq if.

Java wuss error £ = luGeu lvves if

Common Error — Confusing =and ==

floor == floor - 1; // ERROR

statement 3 test 1 floor mnu £loor - 1 ws5elil

il lgnanurnees 1 lumaTilsunsumszaiulian false aasanan,
uasiunliily compiler error, compiler a liusas

Common Error — Confusing =and ==

V4 == rudanlaly if

V% = Avdilulgaulyly if.

Kinds of Error Messages

There are two kinds of errors:

Warnings

Errors

Kinds of Error Messages

e Error messages are fatal.

— The compiler will not translate a program with
one or more errors.

« Warning messages are advisory.

— The compiler will translate the program,
but there is a good chance that the program
will not do what you expect it to do.

Kinds of Error Messages

It is a good idea to learn how to activate
warnings in your compiler.

It as a great idea to write code that
emits no warnings at all.

Kinds of Error Messages

We stated there are two kinds of errors.

Actually there’s only one kind:

The ones you must read
(that’s all of them!)

Kinds of Error Messages

Read all comments and deal with them.

If you understand a warning, and understand why it is
happening, and you don’t care about that reason

— Then, and only then, should you ignore a warning.

and, of course,
you can’t ignore an error message!

Common Error — Exact Comparison of Floating-Point Numbers

Round off errors

Floating-point numbers have only a limited precision.
Calculations can introduce roundoff errors.

Common Error — Exact Comparison of Floating-Point Numbers

Roundoff errors

Let’'s see (by writing code, of course) ...

Common Error — Exact Comparison of Floating-Point Numbers

double r = Math.sqrt(2.0); roundoff error

if (r * r == 2) {
System.out.println("sqrt(2) squared is 2");
} else {

System.out.print ("sqrt (2) squared isnt 2 but 1Y) ;
System.out. format("%.18£f\n", r * r);

This program displays:
sgqrt(2) squared is not 2 but 2.00000000000000044

Common Error — Exact Comparison of Floating-Point Numbers

Roundoff errors — a Solution

Close enough will do.

X—y|<e

Common Error — Exact Comparison of Floating-Point Numbers

Mathematically, we would write that x and y are
close enough if for a very small number, ¢:

X-y|<e

¢ IS the Greek letter epsilon, a letter used to
denote a very small quantity.

Common Error — Exact Comparison of Floating-Point Numbers

It is common to set € to 10-** when comparing
double numbers:

final double EPSIION = 1lE-14;
double r = sqrt(2.0) ;

if (fabs(r * r - 2) < EPSILON)
{

System.out.println("sqrt(2) squared is
approximately 2");

uatan1ataan (Multiple Alternatives)

we’ll go that wg#
else
we go that waly

but what about that way?

Multiple Alternatives

if statements wane 7 statement 411130NIAIN
2UTUNANT7F ARl ANT UL

Multiple Alternatives

Ly ' . = Y o -y 1 A J 1
AIVYN. l§1ﬂ$LmﬂuIﬂ@ﬂ@ﬂTﬁﬂUﬂ1 INIABDT @fﬂ\clhlﬁ

Multiple Alternatives

Table 3 Richter Scale

Value Effect

8 Most structures fall
7 Many buildings destroyed

6 Many buildings considerably
damaged, some collapse

4.5 Damage to poorly constructed
buildings

Multiple Alternatives

Y

Tunsail swanlu 5 branch (5 awinse 5 nsal):

o

1 A 3IA a = ' Y]
HAQENTU DUATDTUIYANUITYNIAN €] NU

Table 3 Richter Scale

Effect

Most structures fall
Many buildings destroyed

Many buildings considerably
damaged, some collapse

Damage to poorly constructed
buildings

/'

<= A 1 a
ngﬂllﬂ'imﬂllllllﬂ’ﬂmﬁﬂﬂ"lﬁl

Multiple Alternatives

s1ewld if statements>uanel °| statement Live
= dl v =
AUl TNTUNABINITUAILNILARN

Richter flowchart

!
l

A

Multiple Alternatives

if (richter >= 8.0) {
System.out.println ("Most structures fall");
} else if (richter >= 7.0) {
System.out.println ("Many buildings destroyed") ;
} else if (richter >= 6.0) {

System.out.println("Many buildings considerably damaged, some
collapse“) ;

} else if (richter >= 4.5) {

System.out.println ("Damage to poorly constructed buildings") ;
} else {

System.out.println("No destruction of buildings") ;

Multiple Alternatives

if (richter >= 8.0) ¢—
{

If atestis false,

System.out.println ("Most structures fall");

}
else if (richter >= 7.0)

{
System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 6.0) {

System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 4.5)

{

System.out.println ("Damage to poorly constructed buildings") ;

}

else

{

System.out.println("No destruction of buildings") ;

Multiple Alternatives

if (false) €— If atestis false,

System.out.println ("Most structures fall");

}
else if (richter >= 7.0)

{
System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 6.0) {

System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 4.5)

{

System.out.println ("Damage to poorly constructed buildings") ;

}

else

{

System.out.println("No destruction of buildings") ;

Multiple Alternatives

AT EaCnt e > B 0) If atestis false

{ A/Q/that block is skipped

System.out.println ("Most structures fall') ;:

P} é
”éiéé"Ef”i?iéﬂ%é£"§§”?T6$...
{
System.out.println ("Many buildings destroyed") ;
}

else if (richter >= 6.0) {

System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 4.5)
{
System.out.println ("Damage to poorly constructed buildings") ;
}
else
{

System.out.println("No destruction of buildings") ;

Multiple Alternatives If atest is false,
that block is skipped and
the next test is made.
System.out.println ("Most stru res fall");

if (richter >= 8.0)
{

}
else if (richter >= 7.0)

{
System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 6.0) {
System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 4.5)

{

System.out.println ("Damage to poorly constructed buildings") ;

}

else

{

System.out.println("No destruction of buildings") ;

Multiple Alternatives

if (richter >= 8.0) As soon as one of the
{ four tests succeeds,

System.out.println ("Most structu

}
else if (richter >= 7.0)

{
System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 6.0) {
System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 4.5)

{

System.out.println ("Damage to poorly constructed buildings") ;

}

else

{

System.out.println("No destruction of buildings") ;

Multiple Alternatives

if (richter >= 8.0
? (richter) As soon as one of the
_ four tests succeeds,
System.out.println ("Most structur all") ;
}
else if (true)

{
System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 6.0) {
System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 4.5)

{

System.out.println ("Damage to poorly constructed buildings") ;

}

else

{

System.out.println("No destruction of buildings") ;

Multiple Alternatives

if (richter >= 8.0)
{

ASs soon as one of the

System.out.println("Most structures fallf'c))ur tests succeeds,
.outc. 1 u u ’ .

Y P that block is executed,

} displaying the result,

else if (richter >= 7.0)
{

System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 6.0) {

System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 4.5)

{

System.out.println ("Damage to poorly constructed buildings") ;

}

else

{

System.out.println("No destruction of buildings") ;

Multiple Alternatives As soon as one of the

if (richter >= 8.0) four tests succeeds,

{ that block is executed,
System.out.println("Most structures fall"); displaying the result,

}
else if (richter >= 7.0)

{

and no further tests

are attempted.

System.out.println ("Many buildings stroyed") ;

}
else if (richter >= 6.0) {

System.out.println ("Many bujfdings considerably damaged, some
collapsé") ;

}
else if (richter >= 4.5
System.out.pri

n ("Damage to poorly constructed buildings") ;

.out.println("No destruction of buildings") ;

Multiple Alternatives — Wrong Order of Tests

Because of this execution order,
when using multiple if statements,
pay attention to the order of the conditions.

INTITANAUNIT execute wiLil, Wasnld if staement
wanel 7] statement HiszdsFeanisdnansurestanla

Multiple Alternatives — Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

System.out.println ("Damage to poorly constructed buildings") ;
}
else if (richter >= 6.0)

{

System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 7.0)

{
System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 8.0)

{

System.out.println("Most structures fall");

Multiple Alternatives — Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

System.out.println ("Damage to poorly constructed buildings") ;

}
else if (richter >= 6.0)

{
System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 7.0)

{
y; Suppose the value

System.out.println("Many buildings destroyed" :
of richteris 7.1,

}
else if (richter >= 8.0)

{

System.out.println("Most structures fall");

Multiple Alternatives — Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

System.out.println (\Damage to poorly constructed buildings") ;

}
else if (richter >= 6.0)

{

System.out.println ("Many buil
collapse") ;

gs considerably damaged, some

}
else if (richter >= 7.0)

{
vy, Suppose the value

) of richteris 7.1,
else if (richter >= 8.0) this test is true!

{

System.out.println ("Many buildings destroye

System.out.println("Most structures fall");

Multiple Alternatives — Wrong Order of Tests

if (true) // Tests in wrong order
{

System.out.println (\Damage to poorly constructed buildings") ;

}
else if (richter >= 6.0)

{

System.out.println ("Many buil
collapse") ;

gs considerably damaged, some

}
else if (richter >= 7.0)

{
vy, Suppose the value

) of richteris 7.1,
else if (richter >= 8.0) this test is true!

{

System.out.println ("Many buildings destroye

System.out.println("Most structures fall");

Multiple Alternatives — Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

System.out.println ("Damage to poorly constructed buildings") ;

}
else if (richter >= 6.0)

{

System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 7.0)

{
Suppose the value

of richteris 7.1,
this test is true!

System.out.println ("Many buildings destroyed") ;

}
else if (richter >= 8.0)

{ and that block is
System.out.println ("Most structures fall"); executed «Dh no')

Multiple Alternatives — Wrong Order of Tests

if (richter >= 4.5) // Tests in wrong order
{
System.out.println ("Damage to poorly constructed buildings") ;

}
else if (richter >= 6.0)

{

System.out.println("Many buildings considerably damaged, some
collapse") ;

}
else if (richter >= 7.0)

{
System.out.println ("Many buildings destroyed") ; Suppose the value

) of richteris 7.1,

else if (richter >= 8.0) this test is true!

¢ and that block is
System.out.println("Most structures fall");

executed (Oh no!),
] —

and we go...

The switch Statement

Y 9 1
TAAY198 190 IUEINNN

int digit;

if (digit == 1) {

else
else
else
else
else
else
else

else

if
if
if
if
if
if
if
if

(digit
(digit
(digit
(digit
(digit
(digit
(digit
(digit

else { digit name

digit name = "one"; }

2) { digit name = "two"; }
3) { digit name = "three";
4) { digit name = "four";
5) { digit name = "five";
6) { digit name = "six"; }
7) { digit name = "seven";
8) { digit name = "eight";
9) { digit name = "nine";

-
-

}

}
}

}

}

}
}

The switch Statement

Java i statement #%e1% Iaauuuasno 1 Iu:

The switch statement.

ONLY a sequence of if statements that compares a single

Integer value against several constant alternatives can be
Implemented as a switch statement.

seuves If statement waw Statement fufsuioudulsvilstuaivats 9 n3a
wimiufvzannsaly switch statement 9

The switch Statement

int digit;

switch (digit)
{

case 1l: digit name = "one"; break;
case 2: digit name = "two"; break;
case 3: digit name = "three"; break;
case 4: digit name = "four"; break;
case 5: digit name = "five"; break;
case 6: digit name = '"six"; break;
case 7: digit name = "seven"; break;
case 8: digit name = "eight"; break;
case 9: digit name = "nine"; break;

default: digit name = ""; break;

Nested Branches

flul1dnegiivae o nsal Aldsunsuazinuuuu@endu (vSenee I branch @eadu)

case 1l: case 3: case 5: case 7: case 9: odd = true; break;

The default: branch figniden ‘lunsdifn Lifinsdllagnidanudn

Nested Branches

nn 9 nsalves Switch desll break statement.

9J 1

y o ~ A
1 break 111, Tusunsuaziauadlifinsaioudis, aunizine break wsie
augablock wesSWItch.,

v 9 Y
Tumailgiia, minauuiluedieil lisestidsy Tend uazeruia €rror yu'lade

mizdusan break statement, Tusunsuveusifeg o luaiuine lideams

Nested Branches

Tdsunsumesaiulnauesi switch statement aeutresuasie way
yould if statement wnnn

Nested Branches — n# (Taxes)

Nested Branches — Taxes

Hoz159nra1n ussvian 377

Nested Branches — Taxes

1oz 15908991 ussvian 3772

(<%

Y o d'a =0 d'
o MMAUNAAMY LANVIINAN
22 110071 USINan 83 ...

Taxes...

Nested Branches — Taxes

1oz 15908991 ussvian 3772

Y o d’a A Y) d'
_us ﬂ1ﬂ1u3uﬂﬂﬂﬂ131ﬂ%1ﬂﬂiﬁﬂﬂﬂ
22 11nn11 ussian 8

Y v
... HAZFUNYN 3 AU AN 13

U1

Taxes...

Nested Branches — Taxes

1oz 15908991 ussvian 3772

Y o d’a A Y) d'
.en ﬂ1§]1u3uﬂﬂﬂﬂ131ﬂ%1ﬂﬂiiﬂﬂﬂ
22 11nn11 ussian 8

Y v
... HAZFUNYN 3 AU AN 13

-V W1

Nested Branches — Taxes

1oz 15908991 ussvian 3772

Y o Aa a2y Y v A
ﬂﬁﬂ“ju‘ﬂﬂﬂﬂ']}l”lﬂ%']ﬂcﬂiiﬂﬂﬂ
22 nath ussiiad 2

Y v
... HAZFUNYN 3 AU AN 13

Nested Branches — Taxes

v 4 Jd 1 dié Y, 1
¢ Glu’dﬁﬁ;ﬂ: Lﬂaimummimﬂmmuﬂuamuzmmmmu

= = 1 o <% Y A dd' % 1 9 1 2% d' 1 Y
® UMMTWMBUUUAN ’mmu@Laﬂmy‘nm"lu"lm!mﬂummwmum

A A 1 Y

= Yy 9 Y9y v a = v
!,’G'T‘ElﬂT]el‘V]LLG]Q\‘1THLL'G’I’Jfl]3'i’JﬂJ'i"Ith]ﬂ!,"UTII'Jﬂ'JfJﬂHLLﬂgﬂﬂﬂ"IHTJ?Jﬂu

1)

o
QEQ

Nested Branches — Taxes

A A Y o
!,‘imn,ﬁJ!f’UfmTﬂ@ﬂu

A A Aa Jd 1
MU ULAY Li”lL’iiJ‘V]’JLﬂi”lg‘I’i‘]jiLIﬁWﬂﬂu

Nested Branches — Taxes

Nested branching analysis is aided by drawing
tables showing the different criteria.

Thankfully, the I.R.S. has done this for us.

msdanzd “Teuludouy (Nested branch)” 2183

Y = 1 42 1
DUITVVIUATT NN €] VHUINDU

Teaan I.R.S l¥udn

Nested Branches — Taxes

Table 4 Federal Tax Rate Schedule

If your status is Single and
if the taxable income is over

$0 $32,000
$32,000

If your status is Married and
if the taxable income is over

$0 $64,000
$64,000

but not over

but not over

the tax is of the amount over

10% $0

$3,200 + 25% $32,000

the tax is of the amount over
10% $0
$6,400 + 25% $64,000

Tax brackets for single filers:
from $0 to $32,000
above $32,000

then tax depends on income

Tax brackets for married filers:
from $0 to $64,000
above $64,000

then tax depends on income

Nested Branches — Taxes

9
= 3 A =~ Y]
aauilisn lamsaamBvesansgud,
MUUAFDIUZMTUAINULazANaYIIE Taan 14,
ADIATUIUN

Nested Branches — Taxes

Nested Branches — Taxes

Y
° ﬁﬁﬂﬁ?ﬂﬂ]ﬁﬁx‘]ﬁﬁ@ NTZAUMTARTU INFITZAL.

Really, only two (at this level).

Nested Branches — Taxes

ADUUTN, 1519098aa U A INENMTUAIY

True Singlcr False

Nested Branches — Taxes

9
INUU, AN ITUUAASTDIUSNITHUANU,

9 v A ~ v = Y
Lﬁqﬁﬂx‘]@ﬂﬂu‘lfﬂLﬂfJ’Jﬂ‘]Jﬂﬁﬂ!GU’t’]\‘]'ETﬂhlﬂ

Sudluaulas ...

Single? False

Nested Branches — Taxes

aulaaazd nested if statement wosdes

A o A A 9y
LW@@@ﬁHi%Lﬁ@QﬂJ@QﬁWﬂUl@

T
e Single?

income True 10%
<32,000 bracket
False

25%
bracket

Nested Branches — Taxes

Y)
DULLNNTULLAD ...

1
i Single?

Nested Branches — Taxes

9} - d' 1 o QU Y
21y nested if AaweenlddmsuasrngouSonlusield

Nested Branches — Taxes
Tumenged mennsodeusunszaun1a

LT
aouusn aeumey 33

Y
AU 1WSeuNey a91ugNITUANIY

9
v = o 9y
IMMNUU LII%EJ‘]J!,CVIEJ‘]J 5$@]U31811ﬂ

3 Y o 9 Y] (Y}
fﬂzmuhlﬂm FIMEOUNU 3 52

Nested Branches — Taxes

public static void main(String [] args) {
final double RATEl = 0.10;
final double RATE2 = 0.25;
final double RATEl_SINGLE_LIMIT = 32000,
final double RATEl_MARRIED_LIMIT = 64000;

Scanner sc_obj = new Scanner (System.in) ;
double taxl = 0, tax2 = 0;

double income;

char marital_status;

System.out.print ("Please enter your income: ");

income = sc_obj.nextDouble()

Systerm.out.print ("Enter s for single, m for married: ");

marital status = sc_obj.next() .charAt(0);

Nested Branches — Taxes

if (marital status == 's')
{
if (income <= RATEl_SINGLE_LIMIT)

{

taxl = RATE]l * income;

}

else
{
taxl = RATEl * RATEl_SINGLE_LIMIT;
tax2 RATE2 * (income - RATE1l SINGLE LIMIT) ;

else

Nested Branches — Taxes

{
if (income <= RATE1l MARRIED LIMIT)

{

taxl = RATEl * income;

}

else

{
taxl = RATEl * RATEl MARRIED LIMIT;

tax2 RATE2 * (income - RATE1l MARRIED LIMIT);

double total tax = taxl + tax2;

System.out.println("The tax is " + total tax);

Nested Branches — Taxes

In practice two levels of nesting should be enough.
Beyond that you should be calling your own functions.

— But, you don’t know to write functions...

..yet

Aa oA Y v < Y 2 :]
Tumaluia dounu 2 szauineudl sdeunuminnianiuimasdew function yuun

- was1ge I @z euaswen function oy

Hand-Tracing (n15laldsunsunqaiia)

A very useful technique for understanding whether a
program works correctly is called hand-tracing.

You simulate the program’s activity on a sheet of paper.
You can use this method with pseudocode or Java code.

v Y
Tumsfswzednlen Tdsunsuihaugniie 151019 la Tlsunsuveusidieie la

Tags lamsshnuvesTdsunsuaslunszany (e1w9z1d pseudocode
wie 1% code Java 131 aonls)

Hand-Tracing (n15laldsunsumqsdia)

« Depending on where you normally work, get:

Hand-Tracing

« Depending on where you normally work, get:

— an index card

Hand-Tracing

« Depending on where you normally work, get:
— an index card

— an envelope

Hand-Tracing

« Depending on where you normally work, get:
— an index card

— an envelope (use the back)

Hand-Tracing

« Depending on where you normally work, get:
— an index card
— an envelope (use the back)

— a cocktail napkin

Hand-Tracing
e nszapazuelsnla

Jd v
— D1AUINNUAT

— ﬁTHﬁﬁQﬂJ@Q%@Q%@WNWﬂ

— NIZATHNYY

U

()

Hand-Tracing

@ﬁ pseudocode #3s Java code,
— 1% marker, wu a paper clip, (130 "lai‘%yuﬁu)
iie mark statement vaizafu'ly
— “Execute w30 71" statement #az statement
— NN 9 aSaRaludusuldeu,

1 1 1 Qﬂl = 1 1 9 Y 1 1 1
HIAUNINN LA wauﬂﬂm"lamumqm!m

Hand-Tracing

Let’s do this with the tax program.

(take those cocktail napkins out of your pockets and get started!)

Hand-Tracing

public static void main(String [] args) ({
final double RATEl = 0.10;
final double RATE2 = 0.25;
final double RATEl_SINGLE_LIMIT = 32000;
final double RATEl_MARRIED_LIMIT = 64000;

Scanner sc_obj = new Scanner (System.in) ;

AN 32 ldasu ldaeuTusunsuyiey

Y
[Y

W ludesveuwiunou'la code 34

Hand-Tracing

public static void main(String [] args) {
final double RATEl = 0.10;
final double RATE2 = 0.25;
final double RATEl_SINGLE_LIMIT = 32000;

final double RATE1l MARRIED LIMIT = 64000;

Scanner sc_obj = new Scanner (System.in) ;

double taxl = 0;

double tax2 = 0; wmarital
tax1 taxZ |, income | status

Hand-Tracing

public static void main(String [] args) {
final double RATEl = 0.10;
final double RATE2 = 0.25;
final double RATEl_SINGLE_LIMIT = 32000;

final double RATE1l MARRIED LIMIT = 64000;

Scanner sc_obj = new Scanner (System.in) ;

double taxl = 0;

double tax2 = 0; wmarital
tax1 taxZ |, income | status

Hand-Tracing

double income;
System.out.println("Please enter your income: ");
income = sc_objunextInt() ;

wmarital
tax1 { income status

0 0 80000

The user typed 80000.

Hand-Tracing

double income;
System.out.print ("Please enter your income: ");
income = sc_obj.nextInt();

System.out.print (“"Enter s for single, m for married: ");
char marital status;
marital status = sc _obj.next() .chatAt(0);

The user typed m

Hand-Tracing

warital
tax1 taxZ . income , status
0 0 80000 "
_/
if (marital status == 's') 4 |

{

if (income <= RATEl SINGLE LIMIT)
{

taxl = RATE]l * income;

}

else

{
taxl = RATEl * RATEl_SINGLE_LIMIT
tax2

.
14

RATE2 * (income - RATEl SINGLE LIMIT) ;

else

Hand-Tracing

if (false

wmarital
tax1 taxZ . income |, status
0 0 80000 M
/
E—

) 4|

if (income <= RATEl SINGLE LIMIT)

{

taxl = RATE]l * income;

}

else

{

taxl = RATEl * RATEl SINGLE LIMIT;

tax2

else

RATE2 * (income - RATEl SINGLE LIMIT) ;

Hand-Tracing

wmarital
tax1 taxZ . income |, status
0 0 80000 M

if (marital status == 's')

{

if (income <= RATEl /SINGLE LIMIT)

taxl = income;
}
else
{
taxl RATE1l * RATEl_SINGLE_LIMIT;

RATE2 * (income - RATEl SINGLE LIMIT) ;

Hand-Tracing

wmarital
tax1 taxZ = income |, status
0 0 80000 M

else

{

if (income <= RATE1l MARRIED LIMIT)
{

taxl = RATE]l * income;

}

else

{
taxl = RATEl * RATEl MARRIED LIMIT;

tax2 RATE2 * (income - RATE1l MARRIED LIMIT);

}
double total tax = taxl + tax2;

Hand-Tracing

warital
tax1 taxZ . income , status
0 0 | 80000 M
/
else
{
if (income <= 64000)

{

taxl = RATEl * income;
}
else
{
taxl = RATEl * RATEl_MARRIED_LIMIT;
tax2 RATE2 * (income - RATEl_MARRIED_LIMIT);

}
double total tax = taxl + tax2;

Hand-Tracing

warital
tax1 taxZ . income , status
0 0 80000 m
else
{
if (false)
{
taxl = RATEl * income;
}
else

taxl = RATEl * RATEl MARRIED LIMIT;
tax2 RATE2 * (income - RATE1l MARRIED LIMIT);

}
double total tax = taxl + tax2;

Hand-Tracing

wmarital
tax1 taxZ = income |, status
0 0 80000 M

else

{
if (income <= RATE1l MARRIED LIMIT

taxl = RATEl * RATEl MARRIED LIMIT;

tax2 = RATE2 * (income - RATE1l MARRIED LIMIT) ;

}
double total tax = taxl + tax2;

Hand-Tracing

marital
taxZ . income , status
y's 80000 "
4000
else
{
if (income <= RATE D LIMIT)

taxl
}
else
{
taxl RATE1l * RATEl_MARRIED_LIMIT;
tax2”"= RATE2 * (income - RATEl_MARRIED_LIMIT);

double total tax = taxl + tax2;

Hand-Tracing

marital
tax1 taxZ |, income , status

' g A | 80000 "

6400 | 4000

else

{
if (income <= RATE1l MARRIED LIMIT)

{

taxl = RATE]l * income;

}

else

{
taxl = RATEl * RATEl MARRIED LIMIT;

tax?2 RATE2 * (income - RATEl_MARRIED_LIMIT);
}
}/

double total tax = taxl + tax2;

Hand-Tracing

marital
tax1 taxZ |, income , status

' g A | 80000 "

6400 | 4000

else

{
if (income <= RATE1l MARRIED LIMIT)

{
taxl = RATEl * income;
}
else
{
taxl = RATEl * RATEl_MARRIED_LIMIT;
tax2 RATE2 * (income - RATEl_MARRIED_LIMIT);

}
INa

double total tax = taxl + tax2;

Hand-Tracing

marital total
tax|1 taxZ . income , status tax
) g y's 80000 H
6400 | 4000 10400

else

{

if (income <= RATE1l MARRIED LIMIT)

{

taxl = RATE]l * income;

}

else

{

taxl = RATEl * RATE]l IED LIMIT;

tax2 = RATE2 * (ingOme - RATEl MARRIED LIMIT) ;

}
double total tax = taxl + tax2;

Hand-Tracing

marital total
tax|1 taxZ | income , status tax
'8 y's 80000 "
6400 | 4000 10400

double total tax = taxl + tax2;

System.out.println("The tax is “

return 0O;

+ total tax);

Prepare Test Cases Ahead of Time
Consider how to test the tax computation program.

Of course, you cannot try out all possible inputs of
filing status and income level.

Even if you could, there would be no point in trying them all.

Prepare Test Cases Ahead of Time

If the program correctly computes one or two tax amounts
In a given bracket, then we have a good reason to believe

that all amounts will be correct.

You should also test on the boundary conditions, at the
endpoints of each bracket

this tests the < vs. <= situations.

Prepare Test Cases Ahead of Time

There are two possibilities for the filing status and two
tax brackets for each status, yielding four test cases.

« Test a handful of boundary conditions, such as an income

that is at the boundary between two brackets, and a zero
Income.

 If you are responsible for error checking, also test an
iInvalid input, such as a negative income.

Prepare Test Cases Ahead of Time

Here are some possible test cases for the tax program:

Test Case Expected Output Comment
30,000 s 3,000 10% bracket
72,000 s 13,200 3,200 + 25% of 40,000
50,000 m 5,000 10% bracket
10,400 m 16,400 6,400 + 25% of 40,000
32,000 m 3,200 boundary case

0 O boundary case

Prepare Test Cases Ahead of Time

It is always a good idea to design test
cases before starting to code.

Working through the test cases gives you a
better understanding of the algorithm that
you are about to implement.

ilou1n Dangling else

e if statement gndousgmelu 1 £ statement dnounils, 919d
Jamae lilinaay

aosmga wedayrivsedan ?

double shipping charge = 5.00;
// $5 inside continental U.S.
if (country == ‘U’)
if (state == ‘H’)
shipping charge = 10.00;
// Pitfall! // Hawaii is more expensive
else
shipping charge = 20.00;
// As are foreign shipments

The Dangling else Problem

Y} 1 1 <3 u o ~
seaumMIderituvileuzuen else Wuvos 1f drusnn test

country == ‘U’
uav3e q uda, compiler hLildfaediniu

compiler Iuaulwenih uas suq else v if findr else figa

double shipping charge = 5.00;
// $5 inside continental U.S.
if (country == ‘U’)
1if (state == ‘H’)
shipping charge = 10.00;
// Hawaii is more expensive
elsk // Pitfall!

shipping charge = 20.00;

// As are foreign shipments

The Dangling else Problem

complier wiu code suiludsiears uag lilsasisdoans

double shipping charge = 5.00;

// $5 inside continental U.S.
if (country == ‘U’)
if (state == ‘H’)
shipping charge

10.00;

// Hawaii is more expensive

eldge

20.00;
// As are foreign shipments

shipping charge

The Dangling else Problem

complier wiu code sufudadiears nas lilsaefisidosns
Jymiiide Dangling else!

double shipping charge = 5.00;

// $5 inside continental U.S.
if (country == ‘U’)
if (state == ‘H’)
shipping charge

10.00;

// Hawaii is more expensive

eldge

20.00;
// As are foreign shipments

shipping charge

The Dangling else Problem — The Solution

uduszudtym dangling else oi14ls

%
%4

a1 l#1i891 191181 statement 14137 block 16

The Dangling else Problem — The Solution

double shipping charge = 5.00;
// $5 inside continental

U.S.
if (country == "USA")
{

if (state == "HI")

shipping charge = 10.00;

// Hawaii is more expensive

}

else
shipping charge = 20.00;
// As are foreign shipments

Boolean Operators

Will we remember next time?
| wish | could put the way to go in my pocket!

Boolean Operators

At this geyser in Iceland, you can see ice, liquid water, and steam.

Boolean Operators

o dUNAIN s auldsunsuNalsguIaNaA)
aoUuNN, Lacls16avn1g test InA1AEIALUAN
atinvls
— fszauiimea, vezudei 0 degrees Celsius and uag

iwoan 100 degrees.

e uiluwasinial draauuninannii 0 uar ad
A1 100

Boolean Operators

o Waaulunisaedulagudandu, iaaasvisisal
sanan1silFouioy duadyndalduna) w1’y
AN

« operator 5uNaulwZid (Nau'ly Boolean)
1538n31 Boolean operator.

« Boolean operators 3t1inA1 Boolean “iily 132
da9A1 uvinn1sdszunanaliiarinan Boolean Tl

The Boolean Operator && (and)

Tun1 Java, && operator (15380731 and) 1iA1259
true fAsaiia Fauly boolean wigagiais

if (temp > 0 && temp < 100)

{
System.out.println("Liquid") ;

01 temp a¢luaiv 0 - 100, A1 boolean yveinel
wazauay && =1uade, vinlk expression
nanualuade (luda && return A1 boolean 7
1w true)

1 temp lu'leaglugae 0-100, expression
NIVNAALLAR false.

The Boolean Operator | | (or)

| | operator (158731 or) Thwaawsidu true a1
Nauladulanaunilaiilude

= Y o (% I v Aa Y]
— weulaglydyanyaluadeiainan

if (temp <=0 || temp >= 100)

{
System.out.println ("Not liquid");

01 expression aulaauiiv lid1zaug1anzauIn
111259, expression NInunIzLT U5

“Not liquid” 3z LignAnWandau lavivasiaiasadn
\u false.

The Boolean Operator ! (not)

VINASILIIHAINI5NAUANNATUIZY 1¥8a [Tl
1112 15171 not operator.

! operator 1#@A1 boolean ALfan wazazliaiu
true 01@1 boolean 2i1ve Tuliu false

AeWiaiu false 91@1 boolean €i1ve) duiiu true

if('frozen) {
System.out.println ("Not frozen") ;
}

“Not frozen” 3zgnna inanuwla frozen fadu 0

Ifalse IS true.

Boolean Operators

A7/ truth table:

A

true
true
false

false

B

true
false
true

false

A& B

Lrue

false

false

false

A

true
true
false

false

B

true
false
true

false

Al|B A
true true
true false
true
false

where A and B 1flua1a1n Boolean expressions.

false

Erle

Boolean Operators — Some Examples

Expression

0 < 200 && 200 < 100

0 < 200 || 200 < 100

0 <200 || 100 < 200

® 0 < 200 < 100

Table 6 Boolean Operators

Value Comment
false Only the first condition is true. Note that
the < operator has a higher precedence than
the & operator.
true The first condition is true.
true The || is not a test for “either-or”.

If both conditions are true, the result is true.

true Error: The expression 0 < 200 is true, which is
converted to 1. The expression 1 < 100 is true.
You never want to write such an expression;
see Common Error 3.5 on page 107.

Boolean Operators — Some Examples

® 110 & 10 > 0

0 <x & x <100 || x == -1
1(0 < 200)
frozen == true

frozen == false

true

(0 < x & x < 100)
I x = -1
false

frozen

'frozen

Error: —10 is not zero. It is converted to true.
You never want to write such an expression;
see Common Error 3.5 on page 107.

The && operator has a higher precedence than
the | | operator.

0 < 200 is true, therefore its negation 1s false.

There is no need to compare a Boolean
variable with true.

[t is clearer to use ! than to compare with
false.

Common Error — Combining Multiple Relational Operators

W150u1 expression sialJil
if (0 <= temp <= 100)..

HULKLauAUaguN 1IN NAAFAENS:

0 < temp < 100

ueilu Java uan Compiler 3:u3d error aanu

Common Error — Combining Multiple Relational Operators

ANUAANAIANNUUDIDNOUAD

if (x && y > 0) ... // Compile Error
~ <
UNUNIZITU

if (x > 0 && y > 0)

(x and y are ints)

Common Error — guauszrne& & waz | |

Y v
NIATUTDIUSLU DY Lﬁﬁ]%'lﬂﬂ?fbl

< Y A P A 1 =2 d a
anuzisaztiulaamaunaitioslasganiiauiuaia:
* limeuasauinney
® LYNNUDYHITONKEIBI YNNG HNIY

I~ 1 9 1 1 1
¢ lﬂullllﬁinﬂllagUl.lllﬂﬂﬁf]\jq']uiﬁll

msazli && nie || @

] 9J
519091% OR Tumssau@ou lumiain

Common Error — svauszevina&& oz | |

NATUITDIULLNDINYNIHDNADE 1IN

aouzisgiuunsnuud 5’mﬂafhwia”lﬂ‘fjgﬂm§qi
* Auosnuaeiioond 2 Yuazqu bilduasanuln
o qadigniililddred1eg Tnehidaauiludnases
. ’gﬂmmﬂma1ﬁ’81uﬂ’1umammﬂluﬂﬁ’u

1 a Ll

] 9 a 9
* quneunn D0 %0 iedsigdnauil

19 & & o 1| @7

1 : 3 a :
mszmneon ludeuiluase, 5deeld && saumnSoul.

Nested Branches —=Taxes

Wait, | am still married

Taxes...

Short Circuit Evaluation

ilonils expression nawilu true or false udn
151 hisuiludeariniuuds
expression && expression && expression &&

wiu duswe eXpression ladwdwilu false isn'lidesi expression da q
wuda mse ail false edndeonils nililaan false udn

expression || expression || expression ||

fueuRennu dus e eXpression ladsdwiu true sn'lidesi expression
@) 1wdd sz a1 true egradeenila A lildan true uds

Short Circuit Evaluation

mw1 Java ngamm E€XPression dau 9 duiududii w return m
oz 15111 o

anuansaEent msmradwin boolean wuu short circuit

. S\
\'
‘N
8 SR
LN Nl |
N |
) > Nl

But not the shocking kind.

DeMorgan’s Law

Suppose we want to charge a higher shipping rate
If we don’t ship within the continental United States.

shipping charge = 10.00;

if (! (country == "USA"
&& state !'= "AK"
&& state '= "HI"))

shipping charge = 20.00;
This test is a little bit complicated.

DeMorgan’s Law to the rescue!

DeMorgan’s Law

DeMorgan’s Law allows us to rewrite complicated
not/and/or messes so that they are more clearly read.

shipping charge = 10.00;

if (country !'= "USA"
| | state == "AK"
| | state == "HI")

shipping charge = 20.00;

Ah, much nicer.

But how did they do that?

DeMorgan’s Law

DeMorgan’s Law:

'(A && B) iIsthesameas !'A || 'B

(change the && to | | and negate all the terms)

'(A || B) isthesameas 'A && 'B
(change the | | to && and negate all the terms)

DeMorgan’s Law

So
l(country == "USA" && state |= "AK" && state != "HI")

I(country == "USA") || /(state != "AK") || I(state = "HI")

\

and they we mpake those silly !(./.==...)'s an
better by\nakjng !(==) be just [F and !(!=)

country I= "USA" || state == "AK" || state == "HI"

Input Validation with i £ Statements

You, the programmer, doing Quality Assurance

(by hand!)

Input Validation with i £ Statements

Let's return to the elevator
program and consider input
validation.

Input Validation with i £ Statements

« Assume that the elevator panel has buttons
labeled 1 through 20 (but not 13!).

« The following are illegal inputs:
— The number 13
— Zero or a negative number
— A number larger than 20
— A value that is not a sequence of digits, such as five

* In each of these cases, we will want to give an
error message and exit the program.

Input Validation with i £ Statements
It is simple to guard against an input of 13:

if (floor == 13)
{
System.out.println ("Error: " +

" There is no thirteenth floor.");
return 1;

Input Validation with i £ Statements

The statement:
return 1;

Immediately exits the main function and therefore
terminates the program.

It IS a convention to return with the value O If the
program completes normally, and with a non-zero
value when an error IS encountered.

Input Validation with i £ Statements

To ensure that the user doesn’t enter a number
outside the valid range:

if (floor <= 0 || floor > 20)
{

System.out.println("Error: " +
" The floor must be between 1 and 20.");

return 1;

Input Validation with i £ Statements

Later you will learn more robust ways to deal with bad
Input, but for now just exiting main with an error report is
enough.

Here’'s the whole program with validity testing:

Input Validation with i £ Statements — Elevator Program

public static void main(String [] args)

{

int floor;

Scanner sc_obj = new Scanner (System.in);
System.out.printin("Floor: ") ;
floor = sc_obj.nextInt();

// The following statements check various input errors
if (floor

{

if

System.

return
(floor

System
return

== 13)

out.println("Error:
1;

<= 0 || floor > 20)

.out.println ("Error:

1;

There is no thirteenth floor.");

floor must be between 1 and 20.");

Input Validation with i £ Statements — Elevator Program

// Now we know that the input is wvalid
int actual floor;
if (floor > 13)

{

actual_floor = floor - 1;
}
else
{

actual_floor = floor;

}

System.out.println(Elevator will travel to the actual floor ™ +
actual floor);

return 0;

Chapter Summary

Use the if statement to implement a decision.

» The if statement allows a program to carry out
different actions depending on the nature of the data to be
processed.

Implement comparisons of numbers and objects.

» Relational operators (< <= > >= == !=) are used to compare
numbers and strings.

« Lexicographic order is used to compare strings.

Implement complex decisions that require multiple if

statements.

» Multiple alternatives are required for decisions that have
more than two cases.

* When using multiple if statements, pay attention to the
order of the conditions.

Chapter Summary

Implement decisions whose branches require further

decisions.

* When a decision statement is contained inside the branch of
another decision statement, the statements are nested.

* Nested decisions are required for problems that have two
levels of decision making.

Draw flowcharts for visualizing the control flow of a

program.

* Flow charts are made up of elements for tasks, input/
outputs, and decisions.

« Each branch of a decision can contain tasks and further
decisions.

* Never point an arrow inside another branch.

Chapter Summary

Design test cases for your programs.

« Each branch of your program should be tested.

* It is a good idea to design test cases before implementing a
program.

Use the bool data type to store and combine conditions

that can be true or false.

* The bool type bool has two values, false and true.

« Java has two Boolean operators that combine conditions:
&& (and) and | | (or).

 To invert a condition, use the ! (not) operator.

 The && and | | operators use short-circuit evaluation:
As soon as the truth value is determined, no further
conditions are evaluated.

* De Morgan’s law tells you how to negate && and | |
conditions.

Chapter Summary

Apply if statements to detect whether user input is valid.

* When reading a value, check that it is within the required
range.

» Use the fail function to test whether the input stream has
failed.

End Chapter Three

Slides by Evan Gallagher

