4
โครงสร้างข้อมูลและอัลกอริทึม

บทที่ 8 การเรียงลำดับข้อมูล
3

 Heap Sort เป็นวิธีการเรียงข้อมูลที่ไม่เร็วเท่า Quick Sort แต่เป็นวิธีที่ไม่ต้องอาศัยสแตกของระบบในการทำงานแบบ Recursive ซึ่งเมื่อก่อนจะเสียเวลาและช้ามากถ้ามีข้อมูลเป็นจำนวนมาก เช่น เดียวกับ Quick Sort ประสิทธิภาพการเรียงเป็นแบบ Big O(Nlog2N) ทำงานแบ่งเป็นสองช่วง ช่วงแรกเป็นการสร้างฮีป (Heap) ซึ่งเป็นทรี (Tree) แต่เป็นคนละลักษณะกับไบนารีทรีดังที่เรียนมาแล้ว ในกรณีที่ต้องการเรียงข้อมูลจากน้อยไปหามากจะต้องเอาค่าใหญ่ไว้ข้างบนเสมอ การสร้างฮีปทรีจะเป็นการสร้างฮีปทรีเสมือนบนอาเรย์ โดยอาศัยความสัมพันธ์ที่ว่า โหนดแม่ที่อินเด็ก i โหนดลูกที่กิ่งซ้ายจะอยู่ที่ 2i โหนดลูกที่กิ่งขวาจะอยู่ที่ 2i + 1
Ex1.9 ข้อมูลมีดังนี้ 42, 23, 74, 11, 65, 58, 94, 36, 99, 87 จงเรียงข้อมูลจากน้อยไปหามากด้วยวิธี Heap Sort

การสร้างฮีป (Heap)
1) เพิ่มค่า 42 42

[image: image1.png]AL

2) เพิ่มค่า 23

ต่อกิ่งซ้าย
[image: image2.png]AL

T4

[image: image3.png]

3) เพิ่มค่า 74

ต่อกิ่งขวา

สลับขึ้น
[image: image4.png]

4) เพิ่มค่า 11

ต่อกิ่งซ้าย
[image: image5.png]

[image: image6.png]

5) เพิ่มค่า 65

ต่อกิ่งขวา

สลับขึ้น
[image: image7.png]

[image: image8.png]

6) เพิ่มค่า 58

ต่อกิ่งซ้าย

สลับขึ้น

[image: image9.png]

[image: image10.png]

7) เพิ่มค่า 94

ต่อกิ่งขวา

สลับขึ้น

ดำเนินงานเช่นนี้จนครบทุกค่าจะได้ฮีปดังนี้
[image: image11.png]

การเรียงข้อมูล (Sorting)
[image: image12.png]

(จากฮีป Heap)

1) สลับค่ารูท 99 กับค่า 23
[image: image13.png]

[image: image14.png]/7 S z/u

 ค่า 99 เรียงแล้ว

 สลับ 23 ลงไป

 ผลักค่าใหญ่กว่า

 ขึ้นมาแทนที่

2) สลับค่ารูท 94 กับค่า 36
[image: image15.png]

[image: image16.png]

 ค่า 94,99

 สลับ 36 ลงไป

 เรียงแล้ว

 ผลักค่าใหญ่กว่า

 ขึ้นมาแทนที่

3) สลับค่ารูท 87 กับค่า 11
[image: image17.png]

[image: image18.png]DN

 ค่า 87,94,99

 สลับ 11 ลงไป

เรียงแล้ว

 ผลักค่าใหญ่กว่า

 ขึ้นมาแทนที่

ดำเนินงานเช่นนี้จนครบทุกค่าจะได้ชุดข้อมูลที่เรียงตามความต้องการ
[image: image19.png]

หรือชุดข้อมูลที่เรียงในอาร์เรย์ดังนี้
 11

23

36

 42

 58

 65

 74

 87

 94

 99
- -
การค้นหาข้อมูลตามลำดับ (Sequential Search)

การค้นหาข้อมูลแบบตามลำดับ เป็นการค้นหาที่ละค่า จากค่าเริ่มต้นไปจน ถึงค่าสุดท้าย ซึ่งการค้นหาอาจหาว่าข้อมูลมีหรือไม่ และถ้าพบก็จะยุติทันที ดังนั้นจำนวนครั้งการค้นหาโดยเฉลี่ยจะเป็น O((1+N)/2) หรือ O(N/2) เมื่อ N คือจำนวนข้อมูลทั้งหมด การค้นหายังมีอีกวิธีหนึ่งคือการค้นหาข้อมูลทุกค่า
Algorithm การค้นหาข้อมูลแบบตามลำดับสำหรับข้อมูลที่ยังไม่มีการจัดเรียง
 1) SequentialSearch (Data[], Max, key)

 2) { Count = 0;

 3) i = 1;
 4) While (i (Max)
 5) { If (Data[i] == key)
 6) { Print("พบข้อมูลที่ : ", i);
 7) Count := Count +1;
 8) }
 9) i = i + 1;
10) }
11) If (Count == 0) Print ("ไม่พบข้อมูล");
12) else Print("พบทั้งหมด ", Count, ” ครั้ง”);
13) }
 Algorithm การค้นหาข้อมูลแบบตามลำดับสำหรับข้อมูลที่มีการเรียงแล้ว
 1) SequentialSearch (Data[], Max, key)

 2) { Count = 0;

 3) i = 1;
 4) While (i (Max And key<Data[i])
 5) { If (Data[i] == key)
 6) { Print("พบข้อมูลที่ : ", i);
 7) Count := Count +1;
 8) }
 9) i = i + 1;
10) }
11) If (Count == 0) Print ("ไม่พบข้อมูล");
12) else Print("พบทั้งหมด ", Count, ” ครั้ง”);
13) }
 การค้นหาข้อมูลแบบไบนารี (Binary Search)
การค้นหาข้อมูลแบบไบนารี เป็นวิธีหนึ่งของการใช้เทคนิคการแบ่งแยกและเอา ชนะ สำหรับกรณีที่ดีที่สุด (Best case) การค้นหาใช้เพียงครั้งเดียว และกรณีที่โชคร้ายที่สุด (Worst case) การค้นหาใช้ไม่เกิน log2N ดังนั้นโดยเฉลี่ยจำนวนครั้งของการค้นหาคือ O((1+log2N)/2) เมื่อ N คือจำนวนข้อมูลทั้งหมด
Algorithm การค้นการข้อมูลแบบ Binary Search

 1) BinarySearch (Data[], Max, Key)

 2) { L = 1;

 3) U = Max;

 4) While (L (U)
 5) { i = (L+U) /2 ;

 6) If (Key < Data[i]) U = i - 1 ;

 7) Else

 8) If (Key > Data[i]) L = i +1 ;

 9) Else
10) { Print("พบข้อมูลที่ : ", i);

11) Return i;

12) }
13) }
14) print("ไม่พบข้อมูล");

15) Return 0;

16) }
4. การค้นหาข้อมูลบนทรี (Search on tree)
นิสิตลองเขียนอัลกอริธึม เองโดยล้อตามการสร้าง Tree (มากกว่าไปกิ่งขวา น้อยกว่าไปกิ่งซ้าย เท่ากับก็ถือว่าพบแล้ว)

